1
|
Benvenutti L, Moura FM, Zanghelini G, Barrera C, Seguí L, Zielinski AAF. An Upcycling Approach from Fruit Processing By-Products: Flour for Use in Food Products. Foods 2025; 14:153. [PMID: 39856819 PMCID: PMC11765213 DOI: 10.3390/foods14020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
The growing global population has led to increased food consumption and a significant amount of food waste, including the non-consumed parts of fruits (e.g., stems, rinds, peels, seeds). Despite their nutrient richness, these by-products are often discarded. With the rising interest in nutrient-dense foods for health benefits, fruit by-products have potential as nutritious ingredients. Upcycling, which repurposes waste materials, is one solution. White flour, which is common in food products like bread and pasta, has good functional properties but poor nutritional value. This can be enhanced by blending white flour with fruit by-product flours, creating functional, nutrient-rich mixtures. This review explores using flours from common Brazilian fruit by-products (e.g., jaboticaba, avocado, guava, mango, banana, jackfruit, orange, pineapple, and passion fruit) and their nutritional, physical-chemical properties, quality and safety, and applications. Partially replacing wheat flour with fruit flour improves its nutritional value, increasing the amount of fiber, protein, and carbohydrates present in it. However, higher substitution levels can alter color and flavor, impacting the sensory appeal and acceptability. While studies showed the potential of fruit by-product flours in food formulation, there is limited research on their long-term health impacts.
Collapse
Affiliation(s)
- Laís Benvenutti
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| | - Fernanda Moreira Moura
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| | - Gabriela Zanghelini
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| | - Cristina Barrera
- Instituto de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain; (C.B.); (L.S.)
| | - Lucía Seguí
- Instituto de Ingeniería de Alimentos—FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain; (C.B.); (L.S.)
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (L.B.); (F.M.M.); (G.Z.)
| |
Collapse
|
2
|
Candice Costa Silva J, Medeiros Santos N, de Sousa Silva N, Cristina Silveira Martins A, Maria Gomes Dutra L, Eduardo Alves Dantas C, Dos Santos Lima M, Fechine Tavares J, Sobral da Silva M, Mangueira do Nascimento Y, Ferreira da Silva E, Eduardo Vasconcelos de Oliveira C, Elieidy Gomes de Oliveira M, Elias Pereira D, Carolina Dos Santos Costa A, Carlo Rufino Freitas J, Késsia Barbosa Soares J, Bordin Viera V. Characterization of flours from the aroeira leaf (Schinus terebinthifolius Raddi), obtained by different drying methods. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124126. [PMID: 38688175 DOI: 10.1016/j.jchromb.2024.124126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The present work aimed at the development and characterization of aroeira leaf flour (Schinus terebinthifolius Raddi), obtained by lyophilization and drying in an air circulation oven. The technological, physical, physico-chemical, morphological, functional, and microbiological aspects were analyzed. Physico-chemical analysis identified the following properties with values provided respectively for fresh leaves (FOin) and flours (FES and FLIO): low water activity (0.984, 0.370, 0.387 g/100 g), moisture (64.52, 5.37, 7.97 g /100 g), ash (2.69, 6.51, and 6.89 g/100 g), pH (0.89, 4.45, 4.48 g/100 g), lipids (0.84, 1.67, 5.23 g/100 g), protein (3.29, 8.23, 14.12 g/100 g), carbohydrates (17.02, 53.12, 33.02 g/100 g), ascorbic acid (19.70, 34.20, 36.90 mg/100 g). Sources of fiber from plant leaves and flours (11.64, 25.1, 32.89 g/100 g) showed increased levels of luminosity. For NMR, the presence of aliphatic and aromatic compounds with olefinic hydrogens and a derivative of gallic acid were detected. The most abundant minerals detected were potassium and calcium. Micrographs identified the presence of irregular, non-uniform, and sponge-like particles. The main sugars detected were: fructose, glucose, and maltose. Malic, succinic, citric, lactic, and formic acids were found. Fifteen phenolic compounds were identified in the samples, highlighting: kaempferol, catechin, and caffeic acid. The values found for phenolics were (447, 716.66, 493.31 mg EAG/100 g), flavonoids (267.60, 267.60, 286.26 EC/100 g). Antioxidant activity was higher using the ABTS method rather than FRAP for analysis of FOin, FES, and FLIO. Since the flours of the aroeira leaf have an abundant matrix of nutrients with bioactive properties and antioxidant activity, they have a potential for technological and functional use when added to food.
Collapse
Affiliation(s)
| | - Nayane Medeiros Santos
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil
| | - Nayara de Sousa Silva
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil
| | | | - Larissa Maria Gomes Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil.
| | - Carlos Eduardo Alves Dantas
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina 56302-100, Brazil
| | - Josean Fechine Tavares
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Yuri Mangueira do Nascimento
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | | | | | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | | | - Juliana Késsia Barbosa Soares
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Vanessa Bordin Viera
- Program of Natural Sciences Biotechnology, Federal University of Campina Grande -UFCG, Cuité, PB, Brazil; Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| |
Collapse
|
3
|
Jeong SG, Kim HM, Lee M, Yang JE, Park HW. Use of Vegetable Waste as a Culture Medium Ingredient Improves the Antimicrobial and Immunomodulatory Activities of Lactiplantibacillus plantarum WiKim0125 Isolated from Kimchi. J Microbiol Biotechnol 2023; 33:75-82. [PMID: 36517044 PMCID: PMC9895991 DOI: 10.4014/jmb.2210.10049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.
Collapse
Affiliation(s)
- Seul-Gi Jeong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Moeun Lee
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea,Corresponding author Phone: +82-62-610-1728 Fax: +82-62-610-1850 E-mail:
| |
Collapse
|
4
|
Liu X, Li Q, Sun A, Du Y, Zhao T. A method for efficient conversion of dehydrated cabbage waste liquid into high ester vinegar. Bioprocess Biosyst Eng 2023; 46:119-128. [PMID: 36445480 DOI: 10.1007/s00449-022-02817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
The utilization of wastewater in food processing factory has become one of the foremost essential and challengeable problems. In this study, cabbage wastewater was used for a mixed fermentation to obtain a high ester vinegar. The effect of fermentation conditions on the total acid content and total ester content of vinegar was investigated through single-factor experiments and response surface methodology analysis. Under the optimal fermentation conditions of 10.61% inoculation amount, 4.9% initial alcohol content, 29.62 °C fermentation temperature, 75.21 h fermentation time, and the exogenous esterification addition amount of 0.6%. The blending vinegar has a total acid content of 3.80 g 100 mL-1 and a total ester content of 30.52 mg mL-1. The significant flavor components in the blending vinegar of the ethyl lactate with a pleasant aroma accounted for 22.15% and the ethyl acetate with a strong fruit aroma accounted for 11.37%.
Collapse
Affiliation(s)
- Xiuhe Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qing Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Aonan Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Yamin Du
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tao Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| |
Collapse
|
5
|
Physical, Nutritional, and Bioactive Properties of Mandacaru Cladode Flour ( Cereus jamacaru DC.): An Unconventional Food Plant from the Semi-Arid Brazilian Northeast. Foods 2022; 11:foods11233814. [PMID: 36496622 PMCID: PMC9739843 DOI: 10.3390/foods11233814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we evaluated the physical, nutritional, and bioactive properties of mandacaru cladode flour (Cereus jamacaru DC.). The granulometric profile revealed particles with non-uniform geometry, flakiness, a rectangular tendency, and a non-homogeneous surface, with particle sizes ranging from 20 to 60 µm. The flour presented low water activity (0.423), a moisture content of 8.24 g/100 g, high ash (2.82 g/100 g), protein (5.18 g/100 g), and total carbohydrate contents (74.48 g/100 g), and low lipid contents (1.88 g/100 g). Mandacaru flour is an excellent source of insoluble dietary fiber (48.08 g/100 g), calcium (76.33%), magnesium (15.21%), and potassium (5.94%). Notably, 1H NMR analysis revealed the presence of N-methyltyramine. Using HPLC chromatography, glucose was identified as the predominant sugar (1.33 g/100 g), followed by four organic acids, especially malic acid (9.41 g/100 g) and citric acid (3.96 g/100 g). Eighteen phenolic compounds were detected, with relevant amounts of kaempferol (99.40 mg/100 g), myricetin (72.30 mg/100 g), and resveratrol (17.84 mg/100 g). The total phenolic compounds and flavonoids were 1285.47 mg GAE/100 g and 15.19 mg CE/100 g, respectively. The mean in vitro antioxidant activity values were higher using the FRAP method (249.45 µmol Trolox TEAC/100 g) compared to the ABTS•+ method (0.39 µmol Trolox TEAC/g). Finally, the ascorbic acid had a content of 35.22 mg/100 g. The results demonstrate the value of mandacaru as a little-explored species and an excellent matrix for the development of flours presenting good nutritional value and bioactive constituents with excellent antioxidant potential.
Collapse
|
6
|
Yang C, Zhao W, Tian H, Wang M, Gao C, Guo Y, Sun B. A preliminary study on the possibility of fermented pineapple peel residue partially replacing whole corn silage in feeding Chuanzhong black goats. Front Microbiol 2022; 13:959857. [DOI: 10.3389/fmicb.2022.959857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to assess the effects of the partial replacement of whole corn silage (WCS) with fermented pineapple peel residue (FPPR) on growth, serological parameters, muscle quality, rumen microorganisms, and fecal microorganisms. A total of 24 Chuanzhong black goats weighing 10.23 ± 1.42 kg were evaluated in a randomized complete trial design in accordance with the following treatments: (1) 0% FPPR in the diet, (2) 25% FPPR in the diet, and (3) 50% FPPR in the diet. In goats, the partial substitution of FPPR for WCS increased the abundance of probiotics, such as Blautia, Butyrivibrio fibrisolvens, and Ruminococcus albus, and did not exert significant effects on overall serological parameters and muscle quality. In conclusion, the partial substitution of FPPR for WCS in the diet did not impair or affect the productive performance of goats.
Collapse
|
7
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
8
|
Stapleton TE, Weinstein SB, Greenhalgh R, Dearing MD. Successes and limitations of quantitative diet metabarcoding in a small, herbivorous mammal. Mol Ecol Resour 2022; 22:2573-2586. [PMID: 35579046 DOI: 10.1111/1755-0998.13643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
DNA metabarcoding is widely used to determine wild animal diets, however whether this technique provides accurate, quantitative measurements is still under debate. To test our ability to accurately estimate abundance of dietary items using metabarcoding, we fed wild caught desert woodrats (Neotoma lepida) diets comprised of constant amounts of juniper (Juniperus osteosperma, 15%) and varying amounts of creosote (Larrea tridentata, 1-60%), or cactus (Opuntia sp., 0-100%), and commercial chow (0-85%). Using metabarcoding, we compared the representation of items in the original diet samples to that in the fecal samples to test the sensitivity and accuracy of diet metabarcoding, the performance of different bioinformatic pipelines, and our ability to correct sequence counts. Metabarcoding, using standard trnL primers, detected creosote, juniper, and chow. Different pipelines for assigning taxonomy performed similarly. While creosote was detectable at dietary proportions as low as 1%, we failed to detect cactus in most samples, likely due to a primer mismatch. Creosote read counts increased as its proportion in the diet increased, and we could differentiate when creosote was a minor and major component of the diet. However, we found that estimates of juniper and creosote varied. Using previously suggested methods to correct these errors did not improve accuracy estimates of creosote, but did reduce error for juniper and chow. Our results indicate that metabarcoding can provide quantitative information on dietary composition, but may be limited. We suggest that researchers use caution in quantitatively interpreting diet metabarcoding results unless they first experimentally determine the extent of possible biases.
Collapse
|
9
|
Identification of volatile compounds, physicochemical and techno-functional properties of pineapple processing waste (PPW). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01243-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Suhag R, Kumar R, Dhiman A, Sharma A, Prabhakar PK, Gopalakrishnan K, Kumar R, Singh A. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Crit Rev Food Sci Nutr 2022; 63:6757-6776. [PMID: 35196934 DOI: 10.1080/10408398.2022.2043237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanotechnology is a rapidly growing field with profound applications in different domains, particularly in food science and technology. Nanoparticles (NPs) synthesis, an integral part of nanotechnology-based applications, is broadly classified into chemical, physical and biosynthesis methods. Chemically sensitive and energy-intensive procedures employed for NPs synthesis are some of the limits of traditional chemical approaches. Recent research has focused on developing easy, nontoxic, cost-effective, and environment-friendly NPs synthesis during the last decade. Biosynthesis approaches have been developed to achieve this goal as it is a viable alternative to existing chemical techniques for the synthesis of metallic nanomaterials. Fruit peels contain abundant bioactive compounds including phenols, flavonoids, tannins, triterpenoids, steroids, glycosides, carotenoids, anthocyanins, ellagitannins, vitamin C, and essential oils with substantial health benefits, anti-bacterial and antioxidant properties, generally discarded as byproduct or waste by the fruit processing industry. NPs synthesized using bioactive compounds from fruit peel has futuristic applications for an unrealized market potential for nutraceutical and pharmaceutical delivery. Numerous studies have been conducted for the biosynthesis of metallic NPs such as silver (AgNPs), gold (AuNPs), zinc oxide, iron, copper, palladium and titanium using fruit peel extract, and their synthesis mechanism have been reported in the present review. Additionally, NPs synthesis methods and applications of fruit peel NPs have been discussed.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Rohit Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Atul Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Arun Sharma
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Krishna Gopalakrishnan
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| |
Collapse
|
11
|
Uuh-Narvaez JJ, Segura-Campos MR. Cabbage (Brassica oleracea var. capitata): A food with functional properties aimed to type 2 diabetes prevention and management. J Food Sci 2021; 86:4775-4798. [PMID: 34658044 DOI: 10.1111/1750-3841.15939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is increasing the prevalence worldwide at an alarming rate, becoming a serious public health problem that mainly affects developing countries. Functional food research is currently of great interest because it contributes to developing nutritional therapy strategies for T2DM prevention and treatment. Bioactive compounds identified in some plant foods contribute to human health by mechanisms of action that exert biological effects on metabolic pathways involved in the development of T2DM. Hence, vegetables with high bioactive compounds content may be a source of functional value for the control of T2DM. Cabbages varieties (Brassica oleracea var. capitata) such as green (GCB), white (WCB), and red (RCB) are foods consumed (raw or cooked) and cultivated in different regions of the world. Scientific evidence shows that cabbage has multi-target effects on glucose homeostatic regulation due to its high content of bioactive compounds. It has also been shown to decrease damage to organs affected by T2DM complications, such as the liver and kidney. Additionally, it could contribute as a preventive by attenuating problems underlying the development of T2DM as oxidative stress and obesity. This review highlights the functional properties of cabbage varieties involved in glucose regulation and the main mechanisms of the action exerted by their bioactive compounds. In conclusion, cabbage is a valuable food that can be employed as part of nutritional therapy or functional ingredient aimed at the prevention and treatment of T2DM.
Collapse
|
12
|
Barone AS, Matheus JRV, de Souza TSP, Moreira RFA, Fai AEC. Green-based active packaging: Opportunities beyond COVID-19, food applications, and perspectives in circular economy-A brief review. Compr Rev Food Sci Food Saf 2021; 20:4881-4905. [PMID: 34355490 DOI: 10.1111/1541-4337.12812] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
The development of biodegradable packaging, based on agro-industrial plant products and by-products, can transform waste into products with high added value and reduce the use of conventional nonrenewable packaging. Green-based active packaging has a variety of compounds such as antimicrobials, antioxidants, aromatics, among others. These compounds interact with packaged products to improve food quality and safety and favor the migration of bioactive compounds from the polymeric matrix to food. The interest in the potential hygienic-sanitary benefit of these packages has been intensified during the COVID-19 pandemic, which made the population more aware of the relevant role of packaging for protection and conservation of food. It is estimated that the pandemic scenario expanded food packaging market due to shift in eating habits and an increase in online purchases. The triad health, sustainability, and circular economy is a trend in the development of packaging. It is necessary to minimize the consumption of natural resources, reduce the use of energy, avoid the generation of waste, and emphasize the creation of social and environmental values. These ideas underpin the transition from the emphasis on the more subjective discourse to the emphasis on the more practical method of thinking about the logic of production and use of sustainable packaging. Presently, we briefly review some trends and economic issues related to biodegradable materials for food packaging; the development and application of bio-based active films; some opportunities beyond COVID-19 for food packaging segment; and perspectives in circular economy.
Collapse
Affiliation(s)
- Andreza Salles Barone
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | | | - Ricardo Felipe Alves Moreira
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.,Collective Health Department, Biomedical Institute, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.,Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Pineapple ( Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules 2021; 26:molecules26113216. [PMID: 34072026 PMCID: PMC8198275 DOI: 10.3390/molecules26113216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Pineapple is consumed on a large scale around the world due to its appreciated sensorial characteristics. The industry of minimally processed pineapple produces enormous quantities of by-products (30–50%) which are generally undervalued. The end-of-life of pineapple by-products (PBP) can be replaced by reuse and renewal flows in an integrated process to promote economic growth by reducing consumption of natural resources and diminishing food waste. In our study, pineapple shell (PS) and pineapple core (PC), vacuum-packed separately, were subjected to moderate hydrostatic pressure (225 MPa, 8.5 min) (MHP) as abiotic stress to increase bromelain activity and antioxidant capacity. Pressurized and raw PBP were lyophilized to produce a stable powder. The dehydrated samples were characterized by the following methodologies: chemical and physical characterization, total phenolic compounds (TPC), antioxidant capacity, bromelain activity, microbiology, and mycotoxins. Results demonstrated that PBP are naturally rich in carbohydrates (66–88%), insoluble (16–28%) and soluble (2–4%) fiber, and minerals (4–5%). MHP was demonstrated to be beneficial in improving TPC (2–4%), antioxidant activity (2–6%), and bromelain activity (6–32%) without affecting the nutritional value. Furthermore, microbial and mycotoxical analysis demonstrated that powdered PC is a safe by-product. PS application is possible but requires previous decontamination to reduce the microbiological load.
Collapse
|
14
|
Brito TBN, Ferreira MSL, Fai AEC. Utilization of Agricultural By-products: Bioactive Properties and Technological Applications. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1804930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- T. B. N. Brito
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
| | - M. S. L Ferreira
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
- Department of Food Science, School of Nutrition, UNIRIO, Rio de Janeiro/RJ, Brazil
| | - Ana E. C. Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro/RJ, Brazil
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro, UERJ, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
15
|
Brito TBN, R S Lima L, B Santos MC, A Moreira RF, Cameron LC, C Fai AE, S L Ferreira M. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MS E. Food Chem 2020; 339:127882. [PMID: 32889131 DOI: 10.1016/j.foodchem.2020.127882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Unconventional parts of vegetables represent a rich source of health-promoting phytochemicals. The phenolic profile of cabbage-stalk flour (CSF), pineapple-crown flour (PCF), and their essential oils were characterized via UPLC-ESI-QTOF-MSE and GC-FID/MS. Antimicrobial activity was tested against five strains, and antioxidant activities were determined in free and bound extracts. Globally, 177 phenolics were tentatively identified in PCF (major p-coumaric acid, ferulic acid, and 4-hydroxybenzaldehyde) and 56 in CSF (major chlorogenicacid, quercetin 3-O-glucuronide, and p-coumaric acid). PCF exhibited a distinguished profile (lignans, stilbenes) and antioxidant capacity, especially in bound extracts (1.3 g GAE.100 g-1; 0.6 g catechin eq.100 g-1; DPPH: 244.7; ABTS: 467.8; FRAP: 762.6 µg TE.g-1, ORAC: 40.9 mg TE.g-1). The main classes of volatile compounds were fatty acids, their esters, and terpenes in CSF (30) and PCF (41). A comprehensive metabolomic approach revealed CSF and PCF as a promising source of PC, showing great antioxidant and discrete antimicrobial activities.
Collapse
Affiliation(s)
- T B N Brito
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L R S Lima
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - M C B Santos
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - R F A Moreira
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L C Cameron
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - A E C Fai
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Department of Basic and Experimental Nutrition, Nutrition Institute, University of State of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - M S L Ferreira
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
de Brito Nogueira TB, da Silva TPM, de Araújo Luiz D, de Andrade CJ, de Andrade LM, Ferreira MSL, Fai AEC. Fruits and vegetable-processing waste: a case study in two markets at Rio de Janeiro, RJ, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18530-18540. [PMID: 32193738 DOI: 10.1007/s11356-020-08244-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Fruits and vegetables (FV) consumed in natura or processed produce a significant volume of waste, causing an economic deficit in the productive chain. FV markets feature a significant production of vegetable residues with potential of use, since they commercialize an increasing amount of minimally processed vegetables and fruit juices. To this end, it is important to identify, quantify, and characterize these wastes and to propose feasible and coherent alternatives for their use at regional and worldwide levels. In this paper, a case study of two FV markets in Rio de Janeiro, Brazil, was conducted to identify and quantify FV processing waste. Over a period of 20 days, the FV residues from 31 vegetables and 17 fruits were identified and weighed. It is estimated by extrapolation that 106,000 kg of FV were processed in 1 year in two units of FV markets and 48.6% of FV were discarded as by-products. This may be a consequence of factors that contribute to waste generation, such as the low preparation and/or training of the manipulators as well as the quality of the equipment and the maintenance thereof. Thus, studies that aim to understand the environmental impact by monitoring the of FV waste are fundamental, since this waste can be used as raw material and converted into value-added products.
Collapse
Affiliation(s)
- Talita Braga de Brito Nogueira
- Graduate Program in Food Science and Nutrition, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Tatiana Pereira Matos da Silva
- Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Daniel de Araújo Luiz
- Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Mariana Simões Larraz Ferreira
- Graduate Program in Food Science and Nutrition, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Graduate Program in Food Science and Nutrition, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
- Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|