1
|
Cho S, Lee YR, Ha SK, Ahn J, Suh HJ, Kim Y. Method validation for analysis of advanced glycation end products in mouse muscle tissue using liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2835-2840. [PMID: 40109023 DOI: 10.1039/d4ay01602e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Advanced glycation end products (AGEs) in food and biological samples have been analyzed using several chromatographic and immunological methods, but no studies have quantitatively analyzed the major AGEs, Nε-carboxy-methyl-lysine (CML) and Nε-carboxy-ethyl-lysine (CEL), in muscle tissue. In this study, a quantitative profiling method using ultra-performance liquid chromatography-tandem mass spectrometry in mouse muscle tissue was developed and validated. For extraction, acid hydrolysis and solid-phase extraction were performed. The CML and CEL were well separated and analyzed within 5 min in multiple reaction monitoring mode. The method was validated against ICH guidelines to evaluate the linearity, limits of detection and quantification, matrix effects, recovery, accuracy, and precision, and the validated approach was applied to muscle tissue from aged mice to establish a baseline for the typical range of CML and CEL. This quantitative profiling method has the potential to be applied in the study of diseases influenced by AGEs.
Collapse
Affiliation(s)
- Seyeon Cho
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea.
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea.
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea.
| | - Jiyun Ahn
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea.
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
2
|
Mansour ST, Ibrahim H, Zhang J, Farag MA. Extraction and analytical approaches for the determination of post-food processing major carcinogens: A comprehensive review towards healthier processed food. Food Chem 2025; 464:141736. [PMID: 39461318 DOI: 10.1016/j.foodchem.2024.141736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Different food processing methods, e.g. fermentation, grilling, frying, etc., to improve food sensory attributes or shelf-stability are typically employed in different cuisines worldwide. These methods may illicit in-situ health-hazardous chemicals via thermal or enzymatic-mediated processes or chemical interactions with food preservatives. This review provides a comparative overview of the occurrence, extraction, and determination of the major food carcinogens such as nitrosamines (NAs), biogenic amines (BAs), heterocyclic aromatic amines (HAAs), polycyclic aromatic hydrocarbons (PAHs), ethyl carbamate (EC), and malondialdehyde (MDA). Their carcinogenicity levels vary from group 1 (carcinogenic to humans) e.g. benzo[a]pyrene, group 2A (probably carcinogenic to humans) e.g. N-nitrosodiethylamine, group 2B (possibly carcinogenic to humans) e.g. chrysene or group 3 (non-classifiable as carcinogenic to humans) e.g. MDA. Chromatography-based methods are the most predominant techniques used for their analysis. LC-MS is widely used for both volatile/non-volatile NAs, HAAs, BAs, and EC, whereas GC-MS is applied more for volatile NAs, PAHs and MDA.
Collapse
Affiliation(s)
- Somaia T Mansour
- Chemistry Department, American University in Cairo, New Cairo, Egypt.
| | - Hany Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Jiachao Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering Hainan University, Haikou 570228, China.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
3
|
Jo K, Lee S, Jeong SKC, Jeon H, Eom JU, Yang HS, Jung S. Reduction of N-nitrosamine in cured ham using atmospheric cold plasma-treated cauliflower powder. Meat Sci 2025; 219:109649. [PMID: 39265385 DOI: 10.1016/j.meatsci.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The effects of cauliflower treated with atmospheric cold plasma (ACP), as a natural nitrite source, on the curing of ground ham and nitrosamine formation were investigated. Ground ham was prepared using sodium nitrite and ACP-treated cauliflower powder (PTCP) to achieve initial nitrite concentrations of 60 and 100 mg/kg, respectively. ACP treatment generated nitrite in cauliflower but significantly reduced the antioxidant activity (P < 0.05). As a nitrite source, PTCP had similar effects as sodium nitrite in the development of cured color in ground ham, with a comparable residual nitrite content (P ≥ 0.05). Three nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), and N-nitrosopyrrolidine (NPYR), were detected in ground ham. NPYR formation was significantly lower in ground ham treated with PTCP at an initial nitrite concentration of 100 mg/kg (P < 0.05). Therefore, the use of a natural nitrite source manufactured through ACP treatment can prospectively achieve suitable curing efficiency while simultaneously suppressing nitrosamine formation.
Collapse
Affiliation(s)
- Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Uk Eom
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han-Sul Yang
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Li J, Liu Y, Jiang CY, Miao XQ, Dong XP, Du M, Jiang PF. Effects of different curing concentrations and drying times on the microbial community structure and metabolites of dried Spanish mackerel. Food Chem 2024; 449:139329. [PMID: 38615634 DOI: 10.1016/j.foodchem.2024.139329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Cured Spanish mackerel has a promising market owing to its nutritious nature as well as ease of transportation and preservation. However, the nutritional and flavor formation mechanism of Spanish mackerel after curing and drying is unclear. To overcome this problem, the effects of different processing conditions on the free amino acid, microbial community, and flavor of Spanish mackerel were explored. Staphylococcus and Cobetia are the main microorganisms in cured mackerel and are closely associated with the formation of their quality. Compared with fresh mackerel, cured mackerel contains increased levels of protein, fat, and chloride, contributing to its distinctive flavor. The contents of free amino acids in the BA64 group were substantially higher than those in other groups, particularly the contents of threonine, glycine, and tyrosine. These findings will contribute to the development of high-quality cured Spanish mackerel products and cured aquatic products.
Collapse
Affiliation(s)
- Jing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Cai-Yan Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiao-Qing Miao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiu-Ping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Peng-Fei Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Li X, Ye Z, Wang J, Lin P, Zhang X, Xie S, Chen C. Intake of tobacco nitrosamines of smokers in various provinces of China and their cancer risk: A meta-analysis. J Environ Sci (China) 2024; 141:249-260. [PMID: 38408825 DOI: 10.1016/j.jes.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Nitrosamines are a class of carcinogens which have been detected widely in food, water, some pharmaceuticals as well as tobacco. The objectives of this paper include reviewing the basic information on tobacco consumption and nitrosamine contents, and assessing the health risks of tobacco nitrosamines exposure to Chinese smokers. We searched the publications in English from "Web of Science" and those in Chinese from the "China National Knowledge Infrastructure" in 2022 and collected 151 literatures with valid information. The content of main nitrosamines in tobacco, including 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN), N-nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), total tobacco-specific nitrosamines (TSNA), and N-nitrosodimethylamine (NDMA) were summarized. The information of daily tobacco consumption of smokers in 30 provinces of China was also collected. Then, the intakes of NNN, NNK, NAT, NAB, TSNAs, and NDMA via tobacco smoke were estimated as 1534 ng/day, 591 ng/day, 685 ng/day, 81 ng/day, 2543 ng/day, and 484 ng/day by adult smokers in 30 provinces, respectively. The cancer risk (CR) values for NNN and NNK inhalation intake were further calculated as 1.44 × 10-5 and 1.95 × 10-4. The CR value for NDMA intake via tobacco smoke (inhalation: 1.66 × 10-4) indicates that NDMA is similarly dangerous in tobacco smoke when compared with the TSNAs. In China, the CR values caused by average nitrosamines intake via various exposures and their order can be estimated as the following: smoke (3.75 × 10-4) > food (1.74 × 10-4) > drinking water (1.38 × 10-5). Smokers in China averagely suffer 200% of extra cancer risk caused by nitrosamines in tobacco when compared with non-smokers.
Collapse
Affiliation(s)
- Xiao Li
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiwei Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Wang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengfei Lin
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China
| | - Xiaojin Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Chao Chen
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, Jiangsu 215163, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Sun Y, Jiang B, Wang X, Liu N, Yang M, Wang S, Guo Y, Zhou D. Occurrence of N-nitrosodimethylamine in roasted Alaska pollock fillets during processing and storage and preliminary cancer risk assessment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6940-6946. [PMID: 37317902 DOI: 10.1002/jsfa.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dried and salt-fermented fish products are important sources of N-nitrosodimethylamine (NDMA) exposure for human. As a potent carcinogen, NDMA was frequently detected in roasted Alaska pollock fillet products (RPFs), which is among the most common fish products in China. Until now, the occurrence and development of NDMA and its precursors (nitrites, nitrates and dimethylamine) in RPFs during processing and storage were not well elucidated, and safety evaluation of this fish product is also urgently needed. RESULTS The presence of precursors in the raw material was verified and significant increase of nitrates and nitrites during processing was observed. NDMA was found generated during pre-drying (3.7 μg kg-1 dry basis) and roasting (14.6 μg kg-1 dry basis) process. Continuous increase in NDMA content can also be found during storage, especially at higher storage temperature. The 95th percentile of Monte Carlo simulated cancer risk (3.73 × 10-5 ) surpassed the WHO threshold (1.00 × 10-5 ) and sensitivity analysis implies the risk was mainly attributable to NDMA level in RPFs. CONCLUSION The occurrence of NDMA in RFPs was mainly a result of endogenous factors originating in Alaska pollock during processing and storage rather than exogenous contamination, and temperature played a pivotal role. The preliminary risk assessment results suggest that long-term consumption of RPFs would impose potential health risks for consumers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Bing Jiang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoli Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yingying Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
7
|
Liu Q, Lei M, Lin J, Zhao W, Zeng X, Bai W. The roles of lipoxygenases and autoxidation during mackerel (Scomberomorus niphonius) dry-cured processing. Food Res Int 2023; 173:113309. [PMID: 37803620 DOI: 10.1016/j.foodres.2023.113309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/03/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
The roles of enzymatic (Lipoxygenases, LOX) oxidation and autoxidation in the dry-cured processing of mackerel were investigated by adding exogenous substances in this study. Four groups, namely control, chlorogenic acid (inhibiting LOX activity), EDTA-2Na (inhibiting autoxidation), and exogenous LOX (adding eLOX), were assigned. The results showed that lipid oxidation of mackerel was reduced by inhibiting LOX activity and autoxidation, while adding eLOX promoted lipid oxidation. Inhibition of LOX activity and autoxidation suppressed fatty acid accumulation mainly in the air-drying and curing stage, respectively. The total contents of key flavors in the mackerel during dry-cured processing were decreased by inhibiting LOX activity and autoxidation, and the former inhibitory effect was stronger than autoxidation, while it was corresponding increased through adding eLOX, of particular in the later stage of air-drying. Collectively, LOX could promote the flavor formation of the mackerel in the dry-cured processing, which could be applied in the flavor adjustment of aquatic products or some similar fields.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Jianjun Lin
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
8
|
Fu Q, Li J, Wang X, Sun-Waterhouse D, Sun X, Waterhouse GIN, Wu P. Covalent organic framework-based magnetic solid-phase extraction coupled with gas chromatography-tandem mass spectrometry for the determination of trace phthalate esters in liquid foods. Mikrochim Acta 2023; 190:383. [PMID: 37697171 DOI: 10.1007/s00604-023-05958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Covalent organic framework-coated magnetite particles (Fe3O4@COF) were synthesized and applied as the adsorbent to the selective capture of phthalate esters (PAEs) in liquid foods. Combined with the magnetic solid-phase extraction (MSPE) technology, a gas chromatography-tandem mass spectrometry (GC-MS/MS) method was employed for the separation and quantification of PAEs. Following optimization of the magnetic extraction and elution parameters, the developed analytical method offered a satisfactory linear range (0.1-5 μg L-1) with determination coefficients ranging from 0.9934 to 0.9975 for the five different PAEs studied. The limits of detection (LOD) were in the range 1.9-12.8 ng L-1. The recoveries ranged from 70.0 to 119.8% with a relative standard deviation (RSD) less than 9.7%. Density functional theory (DFT) calculations established that the dominant adsorption mechanism used by the COF to bind PAEs involved π-π stacking interactions. Results encourage the wider use of COF-based adsorbents and MSPE methods in the analytical determination of PAEs in foods.
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xin Wang
- Weifang Inspection and Testing Center, Weifang, 261000, People's Republic of China
| | | | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | | | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
9
|
Lin S, Wang H, Cai L, Liao L, Su Y, Cai X, Shen M. Characteristics and health risk assessment of volatile N-nitrosamines in the plasma of adults in Guangdong Province, China. J Pharm Biomed Anal 2023; 227:115189. [PMID: 36854220 DOI: 10.1016/j.jpba.2022.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
N-nitrosamines are strong carcinogens that are widely present in the environment. This study developed a method, and analyzed the concentrations of volatile N-nitrosamines (VNAs) in the plasma of adults in Guangdong Province, China. Finally, the health risks to adults in Guangdong Province, China, with dietary exposure to VNAs were assessed. Gas chromatography/mass spectrometry (GC/MS) in electron impact (EI) ionization source mode was used to quantitatively analyze VNAs, and to perform accurate mass determination. The lower limit of detection (LOD) of nine nitrosamines are ranged from 0.01 to 2.14 ng/mL. The recovery rate ranged from 83 % to 116 %, and the relative standard deviation (RSD) was < 10 %. The method developed is simple, rapid, and provides good reproducibility and high sensitivity. N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodinbutylamine (NDBA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), N-nitrosomorpholine (NMOR) and N-nitrosodiphenylamine (NDPhA) were detected in 92 adult plasma samples. NDMA and NMEA were detected in 56.5 % and 44.6 % of the samples, followed by NPIP (34.8 %). NDMA had the highest median concentration (43.7 ng/mL) in the total samples. There were gender-related differences found in the concentrations of NDBA and NDPhA. The exposure risk assessment results showed that the two highest daily dietary intakes of VNAs were N-nitrosodi-n-propylamine (NDPA) and NDMA, and aquatic products and pickled vegetables contributed the most total nitrosamine intake. The lifetime cancer risk of adults ranged from 2.88 × 10-10 to 7.46 × 10-5, and the risk associated with NDMA, NDPA, N-nitrosodiethylamine (NDEA), NMEA and NPIP are important and should attract more attention. This study aimed to explore the exposure levels of VNAs in the plasma of adults in Guangdong Province, China, and to assess the health risks of dietary intake of VNAs, which provides a basis of the effect of VNAs exposure on human health.
Collapse
Affiliation(s)
- Simin Lin
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hetao Wang
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lishan Cai
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lili Liao
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yintong Su
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohua Cai
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mei Shen
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Li D, Zhang W. Biogenic amines and volatile N-nitrosamines in Chinese smoked-cured bacon (Larou) from industrial and artisanal origins. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:143-160. [PMID: 36927403 DOI: 10.1080/19393210.2023.2186489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study aimed to compare biogenic amines (BAs), volatile N-nitrosamines (VNAs) and chemical properties of Chinese smoked-cured bacon (Larou) from industrial and artisanal sources. The results indicated that nitrite residues were low in artisanal Larou, whereas the salt content was relatively high in all samples. The family-made Larou accumulated high levels of BAs and probably present a health risk. Additionally, phenylethylamine exceeded 30 mg/kg in 4 out of 5 industrial Larou samples, whereas, 9 VNAs concentrations were low and unlikely to induce adverse health effects on consumers. Principal component analysis revealed that the industrial Larou products had similar safety properties in terms of BAs and VNAs content when compared to the family-made samples. Correlation analysis indicated that BAs and VNAs were significantly correlated with free amino acids, aw, pH and NaCl, respectively. This study suggests that the quality of Larou needs to be further improved by reducing salt and BAs content.
Collapse
Affiliation(s)
- Dawei Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture, and Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
12
|
Huang M, Zeng Q, Liu Z, Chen X, Gao Y, Wang G, Yu G. Development of a fully automated analytical platform based on static headspace-gas chromatography-tandem mass spectrometry for the analysis of five N-nitrosamines in dried aquatic products of animal origin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7107-7114. [PMID: 35704020 DOI: 10.1002/jsfa.12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The development of rapid and sensitive monitoring methods for trace N-nitrosamines (NAs) in foodstuffs is essential for mitigating the potential health risks to consumers. In the present study, an analytical platform based on one step fully automated static headspace sampling and gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed and validated for the analysis of N-nitrosamines in dried aquatic products of animal origin. The samples and sodium chloride solution mixture were incubated in a heated headspace vial for analyte evaporation, coupled to automatic sampling and online GC-MS/MS analysis. The proposed method requires minimal sample preparation and organic solvent consumption. Five N-nitrosamines including N-nitroso dimethylamine, N-nitroso methyl ethylamine, N-nitroso pyrolidine, N-nitroso piperidine and N-nitroso diphenylamine were selected as model compounds to optimize the significant factors by a using Box-Behnken design. RESULTS The optimum conditions achieved limits of detections in the range 0.08-0.29 μg kg-1 , with correlation coefficient over 0.998. Relative recoveries in dried aquatic product sample were in the range 76.9-92.4%, with relative SDs of 1.9-7.2%. CONCLUSION These results confirm the reliability of the developed method for further application in trace level monitoring of the target analytes in foodstuffs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minxing Huang
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Qiuxia Zeng
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Zhipeng Liu
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Xiaochu Chen
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Yufeng Gao
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Guihua Wang
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| | - Goubin Yu
- Testing and Analysis Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, China
| |
Collapse
|
13
|
Hu J, Liang M, Xian Y, Chen R, Wang L, Hou X, Wu Y. Development and validation of a multianalyte method for quantification of aflatoxins and bongkrekic acid in rice and noodle products using PRiME-UHPLC-MS/MS method. Food Chem 2022; 395:133598. [DOI: 10.1016/j.foodchem.2022.133598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
|
14
|
Luo F, Liu Y, Xie Y, Hou W, Zhang L, Zhang Z. Simultaneous determination of 13 nitrosamine impurities in biological medicines using salting-out liquid-liquid extraction coupled with liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2022; 218:114867. [DOI: 10.1016/j.jpba.2022.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
15
|
Chen Q, Li Y, Dong L, Shi R, Wu Z, Liu L, Zhang J, Wu Z, Pan D. Quantitative determination of Nε-(carboxymethyl)lysine in sterilized milk by isotope dilution UPLC-MS/MS method without derivatization and ion pair reagents. Food Chem 2022; 385:132697. [DOI: 10.1016/j.foodchem.2022.132697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/13/2023]
|
16
|
Zhou H, Huang Q, Wu X, Zhan B, Chen D, Lei M, Zhang H. Rapid and selective determination of 9 nitrosamines in biological samples using ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2249-2254. [PMID: 35670188 DOI: 10.1039/d2ay00468b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensitive, selective and convenient method for the simultaneous determination of 9 nitrosamines (NAs) in biological samples was developed using isotope dilution ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). Multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) scan mode was performed to eliminate false positive results, and the whole detection procedure was characterized by less time consuming and simple sample preparation. 9 NAs were separated through a T3 column with the gradient elution of acetonitrile and water, and detected by UPLC-QTRAP-MS with an atmospheric pressure chemical ionization (APCI) source in the positive mode. The quantitative analysis was carried out via the isotope internal standard method with a matrix calibration curve. Under the optimized conditions, good linearity for the 9 NAs was achieved in the range of 0.2-20 μg L-1 with correlation coefficients (r) higher than ≥0.9991, and the limits of detection and limits of quantitation were 0.02-0.1 μg L-1 (S/N = 3) and 0.06-0.3 μg L-1 (S/N = 10), respectively. Satisfactory recoveries ranging from 79.4% to 108.0% were obtained, and the precision of the proposed method, indicated by the relative standard deviations (RSDs), was 2.3-12.9%. The matrix effect study showed that NDMA, NMOR and NMEA presented a matrix suppression effect, NDPHA displayed a matrix enhancement effect, and the matrix effects of the other 5 analytes could be ignored. Real application of the developed method in 13 urine and 24 plasma samples demonstrated that NDBA, NPIP and NPYR occurred in both urine and plasma samples with the concentration of 0.038-0.60 μg L-1, while other NAs were not detected. Such a method was sensitive and selective, and could be applied to the rapid qualitative and quantitative analysis of the 9 NAs in biological samples.
Collapse
Affiliation(s)
- Hua Zhou
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Qin Huang
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Xianglun Wu
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Bindong Zhan
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Dongyang Chen
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China.
| | - Meikang Lei
- The Comprehensive Technology and Service Center of Quzhou Customs, Quzhou 324003, China
| | - Hao Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China.
| |
Collapse
|
17
|
Bai W, Liang J, Zhao W, Qian M, Zeng X, Tu J, Yang J. Umami and umami‐enhancing peptides from myofibrillar protein hydrolysates in low‐sodium dry‐cured Spanish mackerel (
Scomberomorus niphonius
) under the action of
Lactobacillus plantarum. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weidong Bai
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Jinxin Liang
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Wenhong Zhao
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Min Qian
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Xiaofang Zeng
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Juncai Tu
- School of Science, RMIT University GPO Box 2474 Melbourne Vic 3001 Australia
| | - Juan Yang
- College of Light Industry and Food Technology Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food Ministry of Agriculture Beijing China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
18
|
Identification and comparison of umami-peptides in commercially available dry-cured Spanish mackerels (Scomberomorus niphonius). Food Chem 2022; 380:132175. [DOI: 10.1016/j.foodchem.2022.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
19
|
Effect of microwave-ultrasonic combination treatment on heating-induced gel properties of low-sodium tilapia surimi during gel setting stage and comparative analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Seo J, Park J, Lee Y, Do B, Lee J, Kwon H. Effect of Cooking Method on the Concentrations of Volatile N‐nitrosamines in Various Food Products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jung‐eun Seo
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
- Present address: Digital Appliances Business, Samsung Electronics, 129, Samsung‐ro, Yeongtong‐gu Suwon‐si, Gyeonggi‐do 16677 Republic of Korea
| | - Jong‐eun Park
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
- Present address: Analytics 2 team, Addpharma, 23, Jeongjail‐ro, Bundang‐gu Seongnam‐si, Gyeonggi‐do Republic of Korea
| | - Youngwon Lee
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
| | - Byungkyung Do
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
| | - Jee‐yeon Lee
- Bureau of Health Industry Policy Korea Health Industry Development Institute 187 Osongsaengmyeong 2‐ro, Osong‐eup, Chungcheongbuk‐do 28159 Republic of Korea
| | - Hoonjeong Kwon
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
- Research Institute of Human Ecology Seoul National University, 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
| |
Collapse
|
22
|
Feng LU, Li Y, Ma C, Tuo Y. Bacterial Diversity of Sun-Dried Spanish Mackerel in Dalian and Application of Lactobacillus plantarum X23 as a Biopreservative. J Food Prot 2021; 84:2133-2142. [PMID: 33984135 DOI: 10.4315/jfp-21-057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Sun-dried Spanish mackerel is a common food in Dalian and made by adding salt and sun drying, which has special physical, chemical, and microbiological properties. In this study, the physicochemical properties and microbial composition of commercially available sun-dried Spanish mackerel in Dalian were assessed, and some Lactobacillus strains were screened as a biopreservative for sun-dried Spanish mackerel preparation. The results showed that the total volatile base nitrogen content in the traditional sun-dried Spanish mackerel samples from Dalian was within 30 mg/100 g, the histamine content was 7 to 17 mg/kg, and the dominant bacteria at the genus level were Lactobacillus, Psychrobacter, and Ralstonia. A strain with biopreservative potential was isolated from a sun-dried Spanish mackerel sample, identified as L. plantarum species by 16S rDNA sequencing, and assigned as L. plantarum X23. Fresh Spanish mackerel flesh was treated with 16% brine and L. plantarum X23 at a dose of 107 CFU/mL and then dried in the sun. The sun-dried Spanish mackerel flesh treated with 16% brine and L. plantarum X23 showed a decreased histamine and acid value, increased free amino acid content, and a higher sensory score compared with the sun-dried Spanish mackerel without L. plantarum X23 treatment (P < 0.05). In conclusion, the sun-dried Spanish mackerel purchased from the supermarkets in Dalian were safely edible, and L. plantarum X23 can significantly reduce the content of histamine and putrescine in self-made, low-salt, sun-dried Spanish mackerel and has potential as a biopreservative for sun-dried Spanish mackerel preparation. HIGHLIGHTS
Collapse
Affiliation(s)
- L U Feng
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Ying Li
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Changlu Ma
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, People's Republic of China
| | - Yanfeng Tuo
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
23
|
Liu X, Bai W, Zhao W, Qian M, Dong H. Correlation analysis of microbial communities and precursor substances of ethyl carbamate (EC) during soy sauce fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Hammad SF, Abdallah IA, Bedair A, Mansour FR. Homogeneous liquid-liquid extraction as an alternative sample preparation technique for biomedical analysis. J Sep Sci 2021; 45:185-209. [PMID: 34472701 DOI: 10.1002/jssc.202100452] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Liquid-liquid extraction is a widely used technique of sample preparation in biomedical analysis. In spite of the high pre-concentration capacities of liquid-liquid extraction, it suffers from a number of limitations including time and effort consumption, large organic solvent utilization, and poor performance in highly polar analytes. Homogeneous liquid-liquid extraction is an alternative sample preparation technique that overcomes some drawbacks of conventional liquid-liquid extraction, and allows employing greener organic solvents in sample treatment. In homogeneous liquid-liquid extraction, a homogeneous phase is formed between the aqueous sample and the water-miscible extractant, followed by chemically or physically induced phase separation. To form the homogeneous phase, aqueous samples are mixed with water-miscible organic solvents, water-immiscible solvents/cosolvents, surfactants, or smart polymers. Then, phase separation is induced chemically (adding salt, sugar, or buffer) or physically (changing temperature or pH). This mode is rapid, sustainable, and cost-effective in comparison with other sample preparation techniques. Moreover, homogeneous liquid-liquid extraction is more suitable for the extraction of delicate macromolecules such as enzymes, hormones, and proteins and it is more compatible with liquid chromatography with tandem mass spectrometry, which is a vital technique in metabolomics and proteomics. In this review, the principle, types, applications, automation, and technical aspects of homogeneous liquid-liquid extraction are discussed.
Collapse
Affiliation(s)
- Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.,Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Wu Y, Li Y, Wang R, Zhao Y, Liu H, Wang JJ. Characterization of a Novel Food Grade Emulsion Stabilized by the By- Product Proteins Extracted From the Head of Giant Freshwater Prawn ( Macrobrachium rosenbergii). Front Nutr 2021; 8:676500. [PMID: 34249988 PMCID: PMC8266994 DOI: 10.3389/fnut.2021.676500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this work was to develop a food-grade emulsion that stabilized by the by-product proteins in the head of giant freshwater prawn. The physicochemical properties of protein particles were characterized, and the stability of proteins-stabilized emulsions under different environmental stresses was evaluated. Results showed that the proteins were relatively hydrophilic and preferentially resided in the aqueous phase to form oil/water emulsions. On this basis, the proteins exhibited superior ability to stabilize the emulsions, and remarkably, the emulsions stabilized by 2% proteins and 3:7 oil/water ratio efficiently resisted the freeze-thaw treatment and the change of pH (3-9), salt addition (NaCl, 50-400 mM), and storage temperatures (4-60°C). Furthermore, the emulsions showed a matched long-term stability with the existing biopolymers-stabilized emulsions. Consequently, this is the first finding of the by-product proteins in the head of giant freshwater prawn as an excellent emulsifier to stabilize emulsions, which help to improve the stability of food-grade emulsions and the added value of aquatic products.
Collapse
Affiliation(s)
- Yi Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ronghan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Food Science, Foshan University, Foshan, China
| |
Collapse
|
26
|
Shao X, Zhu M, Zhang Z, Huang P, Xu B, Chen C, Li P. N-nitrosodimethylamine reduction by Lactobacillus pentosus R3 in fermented cooked sausages. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Yang J, Wu S, Mai R, Lin L, Zhao W, Bai W. Formation of amino acid-derived volatile compounds in dry-cured mackerel (Scomberomorus niphonius): Metabolic pathways involving microorganisms, precursors, and intermediates. Food Chem 2021; 364:130163. [PMID: 34175624 DOI: 10.1016/j.foodchem.2021.130163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023]
Abstract
This study focuses on the formation mechanism of amino acid-derived volatile compounds (AAVC) in dry-cured mackerel (Scomberomorus niphonius) (DCM) during the process. Three kind of AAVC (3-methylbutanal, 3-methylbutanol, and phenylacetaldehyde) were detected in DCM. The content of 3-methylbutanal (14.6 mg/kg) was higher than that of phenylacetaldehyde (12.9 mg/kg), and part of which was reduced to 3-methylbutanol (5.15 mg/kg). While the corresponding intermediate, α-ketoisocaproate (156 μg/kg), was lower than that of phenylpyruvic acid (271 μg/kg), indicating its decarboxylation was limited. Five strains (Bacillus, Enterobacter, Staphylococcus, Macrococcus, and Lactobacillus) that can produce the relative transaminases and decarboxylases were involved in the production of AAVC. The most dominant strain, Bacillus (81.9%), was only involved in the production of 3-methylbutanal. The relative abundance of Staphylococcus, the sole phenylpyruvate decarboxylase-producing bacteria, was low, resulting in low product conversion. These results indicated that the production of AAVC is determined by specific microorganisms in the products.
Collapse
Affiliation(s)
- Juan Yang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Siliang Wu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ruijie Mai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
28
|
Hu J, Xian Y, Wu Y, Chen R, Dong H, Hou X, Liang M, Wang B, Wang L. Perchlorate occurrence in foodstuffs and water: Analytical methods and techniques for removal from water - A review. Food Chem 2021; 360:130146. [PMID: 34034057 DOI: 10.1016/j.foodchem.2021.130146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Perchlorate (ClO4-), a type of contaminant with high diffusivity and durability, has been widely detected in water and foodstuffs, arousing a global concern. It can interfere with normal function of the human thyroid gland, affecting human health. Therefore, determination of perchlorate in water and foodstuffs, and removal from water are important. This review focuses on the occurrence of perchlorate, mainly in water and foodstuffs, and provides an overview of analytical methods for determination of perchlorate over the last two decades. In addition, merits and drawbacks of the various methods have been considered. This review also highlights the most commonly used approaches for removal of perchlorate from water. Finally, current trends and future perspectives in determination of perchlorate and removal from water are proposed. This review provided a comprehensive understanding of perchlorate occurrence and its removal from water, and had practical significance in reducing the harm of perchlorate to human.
Collapse
Affiliation(s)
- Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| |
Collapse
|
29
|
Xu Y, Li H, Liang J, Ma J, Yang J, Zhao X, Zhao W, Bai W, Zeng X, Dong H. High-throughput quantification of eighteen heterocyclic aromatic amines in roasted and pan-fried meat on the basis of high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry. Food Chem 2021; 361:130147. [PMID: 34051597 DOI: 10.1016/j.foodchem.2021.130147] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/11/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022]
Abstract
Triple quadrupole mass spectrometry has been the main technique for HAAs analysis in recent decade, while it requires extensive optimization of compound-dependent parameters. A novel method based on HPLC-Q-Orbitrap-HRMS was developed firstly for simultaneous determination of eighteen HAAs. Extraction and purification conditions were optimized and the developed method was validated in terms of linearity, accuracy and precision. Results indicated eighteen HAAs and two internal standards could be separated in 12 min using a gradient elution program. The full MS/dd-MS2 scan was adopted for analysis, which indicated favorable recoveries (71.3-114.8%) along with LODs and LOQs in the ranges of 0.02-0.6 and 0.05-2.0 μg/kg, respectively. Internal standards used for calibration could effectively reduce quantification errors produced by matrix effects. The validated method was successfully applied for HAAs analysis in roasted and pan-fried meat and was confirmed to be an alternative method when triple quadrupole mass spectrometry is absent in lab.
Collapse
Affiliation(s)
- Yan Xu
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haixia Li
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian Liang
- Guangzhou Highgoal Biotech Company Limited, Guangzhou 510110, China
| | - Jina Ma
- Guangzhou Highgoal Biotech Company Limited, Guangzhou 510110, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojuan Zhao
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hao Dong
- College of Light Industry and Food Sciences, Guangdong Key Laboratory of Science and Technology of Lingnan Special Food, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
30
|
Qian M, Zheng M, Zhao W, Liu Q, Zeng X, Bai W. Effect of marinating and frying on the flavor of braised pigeon. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Min Qian
- College of Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Minyi Zheng
- College of Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Wenhong Zhao
- College of Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Qiaoyu Liu
- College of Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Xiaofang Zeng
- College of Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- College of Food Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
- Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
31
|
Robust Detection of Advanced Glycation Endproducts in Milk Powder Using Ultrahigh Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS). FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01986-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Liu X, Qian M, Shen Y, Qin X, Huang H, Yang H, He Y, Bai W. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation. Food Chem 2021; 349:129131. [PMID: 33581434 DOI: 10.1016/j.foodchem.2021.129131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Soy sauce is a traditional fermented soy food for enhancing the umami taste in Asian cuisines. In this study, 16S rRNA gene throughput sequencing analysis showed the bacterial communities and the changes in soy sauce during fermentation. Weissella, Bacillus and Lactococcus were the most abundant at genus level. The uncultured bacterium Weissella and Lactococcus had relatively high abundance at species level. Alpha diversity analysis indicated the bacterial community diversity increased at fermentation initiation, while decreased as fermentation progressed. Based on beta-diversity analysis, four clusters including cluster I (time point A-F), cluster II (G,H), cluster III (I,J) and cluster IV(K) were distinctly separated, indicating the fermentation time significantly affected bacterial community diversity. Also, close associations were found between the bacterial communities in soy sauce and its amino acid nitrogen, organic acid and reducing sugar contents during fermentation. Therefore, it will provide important information for optimization of the soy sauce production process.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China
| | - Min Qian
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China
| | - Yixiao Shen
- College of Food Science Shenyang Agricultural University, Shenyang, China
| | - Xuan Qin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hancong Huang
- Guangzhou Rufeng Fruit Seasoning Food Co., Ltd., Guangzhou, China
| | - Hong Yang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yilong He
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China.
| |
Collapse
|
33
|
Yang J, Huang Y, Dong H, Huang G, Yu L, Bai W, Zeng X. The application of L-glutaminase for the synthesis of the immunomodulatory γ-D-glutamyl-L-tryptophan and the kokumi-imparting γ-D-glutamyl peptides. Food Sci Nutr 2020; 8:5841-5849. [PMID: 33282236 PMCID: PMC7684622 DOI: 10.1002/fsn3.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/07/2022] Open
Abstract
Glutaminase of Bacillus amyloliquefaciens has been used to synthesize the immunomodulatory γ-D-glutamyl-L-tryptophan (γ-D-Glu-L-Trp) and the kokumi-active γ-D-glutamyl peptides. The optimum yield of γ-D-Glu-L-Trp was 55.76 mM in corresponding to a minimum yield of by-product (γ-D-Glu-γ-D-Glu-L-Trp) in the presence of 75 mM D-Gln and 100 mM L-Trp. The glutaminase has a low Km values for the donors (D-Gln and L-Gln:5.53 and 0.98 mM), but high ones for the acceptors (L-Trp, L-Phe, L-Met, L-Val and γ-[D-Glu]( n =1,2,3)-L-Val/L-Phe/L-Met, ranging from 32.51 to 193.05 mM). The highest Km value appearing when n = 2 (γ-[D-Glu]( n =0,1,2)-L-Val/L-Phe/L-Met) suggested the rising difficulty for synthesis when the number of donor increases in the reaction mixtures. The γ-[D-Glu]( n =1,2,3)-L-Val/L-Phe/L-Met at 5 mM can impart the blank chicken broth an enhancing monthfulness, thickness, and umaminess taste.
Collapse
Affiliation(s)
- Juan Yang
- College of Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Yuran Huang
- College of Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Hao Dong
- College of Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Guiying Huang
- College of Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Limei Yu
- College of Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Weidong Bai
- College of Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Xiaofang Zeng
- College of Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
34
|
Wu S, Yang J, Dong H, Liu Q, Li X, Zeng X, Bai W. Key aroma compounds of Chinese dry-cured Spanish mackerel (Scomberomorus niphonius) and their potential metabolic mechanisms. Food Chem 2020; 342:128381. [PMID: 33097327 DOI: 10.1016/j.foodchem.2020.128381] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/29/2020] [Accepted: 10/10/2020] [Indexed: 11/25/2022]
Abstract
The key aroma compounds of six commercially available dry-cured Spanish mackerel (Scomberomorus niphonius, DCSM) were identified using electronic nose (E-nose), gas chromatography-olfactometry (GC-O), and two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). A total of 38-55 aroma compounds were identified, and 21-26 of them, which presented high flavor dilution factors based on aroma extract dilution analysis, were quantified. Lastly, 9-14 key aroma compounds with high odor-active value, including 3-methyl-1-butanal, octanal, 1-octen-3-ol, nonanal, cis-4-decenal, ethyl caproate, (E)-2-octenal, (Z)-2-nonenal decanal, 3-methyl-1-butanol, 1-heptanol, 3-octanone, 2-octanol, and 6-methyl-5-hepten-2-one, were identified as the key aroma contributors in DCSM. Results also indicated that a longer dry-curing time would promote the generation of aroma compounds. The metabolism analysis implied that the auto-oxidation/oxidation of unsaturated fatty acids, such as oleic and linoleic acid, and the enzymatic degradation of l-leucine might be potential metabolic mechanisms.
Collapse
Affiliation(s)
- Siliang Wu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qiaoyu Liu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangluan Li
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
35
|
Lim H, Oh Y, Shin H. Determination of
N
‐Nitrosodimethylamine and
N
‐Nitrosodiethylamine in Sartans and Metformin Raw Materials and Finished Products by Headspace Gas Chromatography‐Tandem Mass Spectrometry. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hyun‐Hee Lim
- Drug Abuse Research Center Kongju National University Kongju 314‐701 Republic of Korea
| | - Yun‐Suk Oh
- Research Center International Advanced Analytical Institute Goyang Republic of Korea
| | - Ho‐Sang Shin
- Department of Environmental Education Kongju National University Kongju 314‐701 Republic of Korea
| |
Collapse
|