1
|
Zheng S, Huang Z, Dong L, Li D, Hu X, Chen F, Ma C. Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients. Foods 2025; 14:331. [PMID: 39856997 PMCID: PMC11765362 DOI: 10.3390/foods14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry. METHODS This paper provides an overview of the sources and sustainable methods of high value-added compounds extracted from FVW. Sustainable techniques, including supercritical fluid extraction and ultrasound-assisted extraction, are compared with traditional methods, for their efficiency in extracting high-value compounds from FVW while minimizing environmental impact. DISCUSSIONS Sustainable extraction of FVW compounds is sustainable and beneficial for novel food ingredients. However, challenges in scalability and cost need to be addressed for wider adoption in the food sector. CONCLUSIONS Sustainable extraction techniques effectively extract phytochemicals from FVW, preserving bioactivity and reducing environmental load. These methods show promise for sustainable food ingredient development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (Z.H.); (L.D.); (D.L.); (X.H.); (F.C.)
| |
Collapse
|
2
|
Jiang J, Luo J, Zheng W, Liu J, Jiang H, Wu C, Bai H. Establishment of fingerprint of phenolic compounds in Semen Ziziphi Spinosae and study on the spectrum-effect relationship based on different preceding cropping areas. Front Chem 2025; 12:1520586. [PMID: 39831032 PMCID: PMC11739076 DOI: 10.3389/fchem.2024.1520586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
As an agricultural planting practice, preceding cropping can not only enhance soil fertility and reduce pests and diseases but also boost crop yield and quality. In this study, SZS samples from different preceding cropping areas were selected as research subjects. Phenolic compounds were analyzed using high-performance liquid chromatography (HPLC), and antioxidant activities were assessed based on free radical scavenging effects. Variety differences were explored through chemical pattern recognition, and the spectrum-effect relationship between the fingerprint spectra of SZS and antioxidant activity was investigated using Pearson correlation analysis, grey relational analysis, and other methods. A total of 17 peaks were observed, among which 4 peaks were identified. They are gallic acid, catechin, spinosin, and scutellarin. The 22 SZS samples could be categorized into 3 groups, with cluster analysis and principal component analysis results being largely consistent. Spinosin, a marker compound of SZS, is a crucial contributor to the total antioxidant activity. In conclusion, the spectrum-effect relationship between phenolic compounds and the antioxidant activity of SZS was established, and the main characteristic components affecting antioxidant activity were identified, providing a reference for the quality evaluation of SZS and the development of its products.
Collapse
Affiliation(s)
- Junfeng Jiang
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Jun Luo
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Wenyu Zheng
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Jiayi Liu
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| | - Cuiyun Wu
- College of Horticulture and Forestry, Tarim University, Alar, Xinjiang, China
| | - Hongjin Bai
- College of Chemistry and Chemical Engineering, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
3
|
Zhou C, Adeyanju AA, Nwonuma CO, Inyinbor AA, Alejolowo OO, Al-Hamayda A, Akinsemolu A, Onyeaka H, Olaniran AF. Physical field-assisted deep eutectic solvent processing: A green and water-saving extraction and separation technology. J Food Sci 2024; 89:8248-8275. [PMID: 39668112 DOI: 10.1111/1750-3841.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Extraction of organic and bioactive compounds from plant materials with the traditional organic solvents aided by water or oil bath heating is not sustainable, because it consumes a lot of energy, time, water/oil, solvents, and results in lower yield. This review discusses deep eutectic solvent (DES) as a green solvent, physical field technology (PFT) as a water-saving and green technology, and how the coupling of PFT (ultrasound [US], microwave [MW], infrared [IR]) to DES will improve the yield and quality of protein, polysaccharides, polyphenols, pectin, and terpenoids extracted from plant materials. Ultrasonication increases DES extraction efficiency via cavitation dislodgement and pores creation. IR coupling to DES enhances the extraction yield of polyphenols and the antioxidant and antiradical activity. MW improves DES extraction yield, reduces energy consumption, operational cost, and compound degradation, and is inferred to be the greenest technology.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Adeyemi Ayotunde Adeyanju
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Nigeria
| | | | - Asmaa Al-Hamayda
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, UAE
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Food Science and Nutrition Programme, Food Science and Microbiology Department, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
4
|
Kiani A, Torabi P, Mousavi ZE. Green recovery of phenolic compounds from almond hull waste using ultrasound-assisted extraction: phenolics characterization and antimicrobial investigation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1930-1942. [PMID: 39285987 PMCID: PMC11401814 DOI: 10.1007/s13197-024-05969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 09/19/2024]
Abstract
This research aims to maximize the extraction of phenolic compounds (PCs) from almond hull waste (AHW) using an ultrasound-assisted extraction (UAE) method, detect the PCs, and investigate the antimicrobial activity of the extracts against pathogens and interactions with a probiotic bacterium. The impact of various parameters including sonication amplitude, solvent/AHW ratio (mL/g), and extraction time on the total phenolic content (TPC) was investigated and the optimized extraction conditions were determined. The AHW extracts' minimum bacterial concentration (MBC) and minimum inhibitory concentration (MIC) against Staphylococcus aureus, Escherichia coli, and Lactobacillus plantarum were assessed. In optimal UAE conditions total PCs of 47.37 ± 0.24 mg gallic acid equivalent (GAE)/g dry weight (DW) were extracted. The HPLC analysis revealed that the flavonoid rutin, as well as p-coumaric acid and rosmarinic acid, were only seen in the extracts obtained by UAE. Furthermore, p-coumaric acid emerged as the most prevalent PC in the UAE extract. Antimicrobial activity analysis showed that UAE extracts exhibited higher effects in inhibiting the growth of E. coli, S. aureus, and L. plantarum. The use of UAE treatment resulted in the extraction of a diverse range of PCs with increased antioxidant capacity and antimicrobial activity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05969-3.
Collapse
Affiliation(s)
- Ahmadreza Kiani
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Payam Torabi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Zeinab E Mousavi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Technology, University of Tehran, Karaj, 31587-77871 Iran
| |
Collapse
|
5
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
6
|
Fan SJ, Zhang XY, Cheng Y, Qiu YX, Hu YY, Yu T, Qian WZ, Zhang DJ, Gao S. Extraction Optimization of Phenolic Compounds from Triadica sebifera Leaves: Identification, Characterization and Antioxidant Activity. Molecules 2024; 29:3266. [PMID: 39064845 PMCID: PMC11278767 DOI: 10.3390/molecules29143266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Triadica sebifera (T. sebifera) has attracted much attention because of the high oil content in its seeds, but there are few systematic studies on the phenolic compounds of T. sebifera leaves (TSP). In this study, the extraction process of TSP was optimized by response surface methodology. The phenolic components of these extracts were analyzed by high-performance liquid chromatography (HPLC). Moreover, the effects of hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the antioxidant activity and characterization of T. sebifera leaf extract (TSLE) were evaluated. Under the conditions of ethanol concentration 39.8%, liquid-solid ratio (LSR) 52.1, extraction time 20.2 min and extraction temperature 50.6 °C, the maximum TSP yield was 111.46 mg GAE/g dw. The quantitative analysis and correlation analysis of eight compounds in TSP showed that the type and content of phenolic compounds had significant correlations with antioxidant activity, indicating that tannic acid, isoquercitrin and ellagic acid were the main components of antioxidant activities. In addition, through DPPH and ABTS determination, VD-TSLE and FD-TSLE showed strong scavenging ability, with IC50 values of 138.2 μg/mL and 135.5 μg/mL and 73.5 μg/mL and 74.3 μg/mL, respectively. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) infrared spectroscopy revealed small differences in the extracts of the three drying methods. This study lays a foundation for the effective extraction process and drying methods of phenolic antioxidants from T. sebifera leaves, and is of great significance for the utilization of T. sebifera leaves.
Collapse
Affiliation(s)
- Shao-Jun Fan
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Xin-Yue Zhang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yu Cheng
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yu-Xian Qiu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Yun-Yi Hu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Ting Yu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China;
| | - Wen-Zhang Qian
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
| | - Dan-Ju Zhang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Gao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China (Y.-Y.H.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
de Jesus RA, da Silva WR, Wisniewski A, de Andrade Nascimento LF, Blank AF, de Souza DA, Wartha ERSDA, Nogueira PCDL, Moraes VRDS. Microwave and ultrasound extraction of antioxidant phenolic compounds from Lantana camara Linn. leaves: Optimization, comparative study, and FT-Orbitrap MS analysis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:889-902. [PMID: 38369344 DOI: 10.1002/pca.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The species Lantana camara is used in folk medicine. The biological activities of this medicinal plant are attributable to the presence of various derivatives of triterpenoids and phenolic compounds present in its preparations, indicating excellent economic potential. OBJECTIVE In this study, the operational conditions of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were optimized using Box-Behnken design to improve the total phenolic content (TPC) recovered in hydroethanolic extracts of L. camara leaves. MATERIAL AND METHODS The TPC, total flavonoid content (TFC), and antioxidant activities of the hydroalcoholic extracts of L. camara, prepared by UAE and MAE under the optimized extraction conditions, were compared with those of the extracts obtained by conventional extraction methods. RESULTS Under the optimal conditions, the extracts obtained by UAE (35% ethanol, 25 min, and a solvent-to-solid ratio of 60:1 mL/g) and by MAE (53% ethanol, 15 min, and 300 W) provided high yields of 32.50% and 38.61% and TPC values of 102.89 and 109.83 mg GAE/g DW, respectively. The MAE extract showed the best results with respect to TPC, TFC, and antioxidant activities, followed by extracts obtained by UAE, Soxhlet extraction, decoction, maceration, and infusion, in that order. CONCLUSION The results obtained indicate that L. camara may be used as an important source of antioxidant phenolic compounds to obtain products with high biological and economic potential, especially when the extraction process is performed under appropriate conditions using MAE and/or UAE, employing environmentally friendly solvents such as water and ethanol.
Collapse
Affiliation(s)
| | - Wenes Ramos da Silva
- Department of Chemistry, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Alberto Wisniewski
- Department of Chemistry, Federal University of Sergipe, São Cristovão, SE, Brazil
| | | | - Arie Fitzgerald Blank
- Department of Agronomic Engineering, Federal University of Sergipe, São Cristovão, SE, Brazil
| | | | | | | | | |
Collapse
|
8
|
Vo TP, Nguyen THP, Nguyen VK, Dang TCT, Nguyen LGK, Chung TQ, Vo TTH, Nguyen DQ. Extracting bioactive compounds and proteins from Bacopa monnieri using natural deep eutectic solvents. PLoS One 2024; 19:e0300969. [PMID: 38551952 PMCID: PMC10980249 DOI: 10.1371/journal.pone.0300969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
This study employed novel extraction methods with natural deep eutectic solvents (NADES) to extract bioactive compounds and proteins from Bacopa monnieri leaves. The conditional influence of ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzymatic-assisted extraction (EAE) on the recovery efficiency of phenolics, proteins, flavonoids, and terpenoids was evaluated. The conditions of UAE were 50 mL/g LSR, 600W of ultrasonic power, and 30% water content with 40°C for 1 min to obtain the highest bioactive compounds and protein contents. The conditions of MAE were 40 mL/g LSR, 400W of microwave power with 30% water content for 3 min to reach the highest contents of biological compounds. The conditions of EAE were 30 mL/g of LSR, 20 U/g of enzyme concentration with L-Gly-Na molar ratio at 2:4:1, and 40% water content for 60 min to acquire the highest bioactive compound contents. Scanning electron microscopy (SEM) is employed to analyze the surface of Bacopa monnieri leaves before and after extraction. Comparing seven extraction methods was conducted to find the most favorable ones. The result showed that the UMEAE method was the most effective way to exploit the compounds. The study suggested that UMEAE effectively extracts phenolics, flavonoids, terpenoids, and protein from DBMP.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tran Ha Phuong Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vy Khang Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Cam Tu Dang
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le Gia Kiet Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thanh Quynh Chung
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thi Thanh Huong Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Dey S, Saxena A, Kumar Y, Maity T, Tarafdar A. Optimizing the effect of ultrasonication and germination on antinutrients and antioxidants of kodo ( Paspalum scrobiculatum) and little ( Panicum sumatrense) millets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2990-3001. [PMID: 37786602 PMCID: PMC10542061 DOI: 10.1007/s13197-023-05837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Kodo (Paspalum scrobiculatum) and little (Panicum sumatrense) millet grains were utilized to minimize their antinutrient content (phytate and tannin) and maximize their antioxidant activity (DPPH) by studying the effect of ultrasonication time, germination time and temperature using central composite rotatable design. Results revealed the optimum conditions for producing ultrasonicated and germinated kodo and little millet flour of the highest antioxidant activity and lowest antinutrient content (phytate and tannin) by using 30 min for ultrasonication, 72 h for germination at 40 °C. Further, a second order model was developed to describe and predict the effect of process variables on antioxidant activity and antinutrient contents. Extended experiments were carried out under the optimized conditions to validate the developed model. The antioxidant activity obtained was 88.46% RSA and 89.06% RSA for kodo and little millet grain flours, respectively whereas antinutrient content for phytate was 0.165 mol/kg and 0.199 mol/kg and for tannin 2.88 mol/kg and 9.51 mol/kg, for kodo and little millet grain flours, respectively. This study provides useful information about the potential utilization of ultrasonicated and germinated kodo and little millet grain flours for the development of functional foods.
Collapse
Affiliation(s)
- Swarnima Dey
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
- Department of Food Technology, Faculty of Science and Humanities, SRM University Delhi- NCR Sonepat, Haryana, 131029 India
| | - Alok Saxena
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - Yogesh Kumar
- Department of Food Technology, Faculty of Science and Humanities, SRM University Delhi- NCR Sonepat, Haryana, 131029 India
| | - Tanushree Maity
- Office of the Director General - Life Sciences, Defence Research and Development Organization, SSPL Campus, Lucknow Road, Timarpur, New Delhi 110054 India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, 243122 Izatnagar, Bareilly, Uttar Pradesh India
| |
Collapse
|
10
|
Kungsuwan K, Sawangrat C, Ounjaijean S, Chaipoot S, Phongphisutthinant R, Wiriyacharee P. Enhancing Bioactivity and Conjugation in Green Coffee Bean ( Coffea arabica) Extract through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic-Protein Conjugates. Molecules 2023; 28:7066. [PMID: 37894545 PMCID: PMC10609076 DOI: 10.3390/molecules28207066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Cold plasma technology is gaining attention as a promising approach to enhancing the bioactivity of plant extracts. However, its impact on green coffee bean extracts (GCBEs) still needs to be explored. In this study, an innovative underwater plasma jet system was employed to investigate the effects of cold plasma on Coffea arabica GCBEs, focusing on the conjugation reflected by the change in composition and bioactivity. The DPPH radical scavenging antioxidant activity exhibited a gradual increase with plasma treatment up to 35 min, followed by a decline. Remarkably, at 35 min, the plasma treatment resulted in a significant 66% increase in the DPPH radical scavenging activity of the GCBE. The total phenolic compound content also displayed a similar increasing trend to the DPPH radical scavenging activity. However, the phenolic profile analysis indicated a significant decrease in chlorogenic acids and caffeine. Furthermore, the chemical composition analysis revealed a decrease in free amino acids, while sucrose remained unchanged. Additionally, the SDS-PAGE results suggested a slight increase in protein size. The observed enhancement in antioxidant activity, despite the reduction in the two major antioxidants in the GCBE, along with the increase in protein size, might suggest the occurrence of conjugation processes induced by plasma, particularly involving proteins and phenolic compounds. Notably, the plasma treatment exhibited no adverse effects on the extract's safety, as confirmed by the MTT assay. These findings indicate that cold plasma treatment holds significant promise in improving the functional properties of GCBE while ensuring its safety. Incorporating cold plasma technology into the processing of natural extracts may offer exciting opportunities for developing novel and potent antioxidant-rich products.
Collapse
Affiliation(s)
- Kuntapas Kungsuwan
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sakaewan Ounjaijean
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Vo TP, Pham TV, Tran TNH, Vo LTV, Vu TT, Pham ND, Nguyen DQ. Ultrasonic-Assisted and Microwave-Assisted Extraction of Phenolics and Terpenoids from Abelmoschus sagittifolius (Kurz) Merr Roots Using Natural Deep Eutectic Solvents. ACS OMEGA 2023; 8:29704-29716. [PMID: 37599925 PMCID: PMC10433328 DOI: 10.1021/acsomega.3c03929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
This research extracted phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr roots using natural deep eutectic solvent-based novel extraction techniques. Twelve natural deep eutectic solvents (NADESs) were produced for recovering phenolics and terpenoids. Citric acid/glucose and lactic acid/glucose, with a molar ratio of 2:1, were determined as the most appropriate NADESs for extracting phenolics and terpenoids, respectively. Afterward, the proper conditions for NADES-based ultrasonic-assisted and microwave-assisted extraction were investigated. Then, the time and liquid-to-solid ratios of ultrasonic- and microwave-combined extraction methods and the sequence of ultrasound and microwave treatments were examined. The conditions of ultrasonic-assisted extraction were 40 mL/g liquid-to-solid ratio, 40% water content, 30°C, 5 min, and 600 W ultrasonic power for the highest terpenoid recovery at 69 ± 2 mg UA/g dw, while 150 W ultrasonic power was suitable for phenolic recovery at 9.56 ± 0.17 mg GAE/g dw. The conditions of microwave-assisted extraction were 50 mL/g liquid-to-solid ratio, 20% water content, 400 W microwave power, and 2 min to acquire the highest phenolics and terpenoids at 22.13 ± 0.75 mg GAE/g dw and 90 ± 1 mg UA/g dw, respectively. Under appropriate conditions, the biological activities, phenolic content, and terpenoid content of obtained extracts from four extraction methods, including ultrasonic-assisted, microwave-assisted, ultrasonic-microwave-assisted, and microwave-ultrasonic-assisted extraction, were compared to select the most proper method. The conditions of ultrasonic-microwave-assisted extraction were 40 mL/g liquid-to-solid ratio, 5 min sonication, and 1 min microwave irradiation to obtain the highest phenolic and terpenoid contents (27.07 ± 0.27 mg GAE/g dw and 111 ± 3 mg UA/g dw, respectively). Ultrasonic-microwave-assisted extraction showed the highest phenolic content, terpenoid content, and biological activities among the four extraction techniques. The changes in the surface morphology were determined using scanning electron microscopy. This study demonstrated that ultrasonic-microwave-assisted extraction was an effective and sustainable method in food and pharmaceutical industries for recovering phenolics and terpenoids from Abelmoschus sagittifolius (Kurz) Merr.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thuy Vy Pham
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Thi Ngoc Huyen Tran
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Le Thao Vy Vo
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Trong Thuc Vu
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Ngoc Duyen Pham
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| | - Dinh Quan Nguyen
- Laboratory
of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
12
|
Ahmadian S, Kenari RE, Amiri ZR, Sohbatzadeh F, Khodaparast MHH. Effect of ultrasound-assisted cold plasma pretreatment on cell wall polysaccharides distribution and extraction of phenolic compounds from hyssop (Hyssopus officinalis L.). Int J Biol Macromol 2023; 233:123557. [PMID: 36740126 DOI: 10.1016/j.ijbiomac.2023.123557] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hyssopus officinalis L (Hyssop) is a good source of phenolic compounds. However, conventional methods for extraction of these compounds typically take a long time and have relatively low recovery rates. This study focused on cold atmospheric plasma (CAP) pretreatment and investigated its effects on the ultrasound-assisted extraction (UAE) of phenolic compounds from hyssop. Hyssop was treated at dielectric barrier discharge plasma with air and nitrogen gases for 5, 10, and 15 min. Optical emission spectroscopy was used to evaluate present active species in the plasma. The water contact angle changes, cell wall polysaccharides distribution, and structural variations of the treated samples were determined after treatment. Antioxidant activity and total phenolic contents (TPC) of the extracts were also evaluated. The results showed that CAP treatment reduced the contact angle making surface more hydrophilic. Compared with hyssop, overall no significant changes in the basic structure of all treated samples or the formation of new functional groups were recognized. In addition, CAP pretreatment before UAE increased the antioxidant activity of extracts according to the FRAP assay than the un-pretreated sample and conventional solvent extraction method. Also, TPC increased in samples treated with nitrogen plasma.
Collapse
Affiliation(s)
- Soheila Ahmadian
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Km 9 Farah Abad Road, Sari, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | |
Collapse
|
13
|
‘Aqilah NMN, Rovina K, Felicia WXL, Vonnie JM. A Review on the Potential Bioactive Components in Fruits and Vegetable Wastes as Value-Added Products in the Food Industry. Molecules 2023; 28:molecules28062631. [PMID: 36985603 PMCID: PMC10052168 DOI: 10.3390/molecules28062631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The food production industry is a significant contributor to the generation of millions of tonnes of waste every day. With the increasing public concern about waste production, utilizing the waste generated from popular fruits and vegetables, which are rich in high-added-value compounds, has become a focal point. By efficiently utilizing food waste, such as waste from the fruit and vegetable industries, we can adopt a sustainable consumption and production pattern that aligns with the Sustainable Development Goals (SDGs). This paper provides an overview of the high-added-value compounds derived from fruit and vegetable waste and their sources. The inclusion of bioactive compounds with antioxidant, antimicrobial, and antibrowning properties can enhance the quality of materials due to the high phenolic content present in them. Waste materials such as peels, seeds, kernels, and pomace are also actively employed as adsorbents, natural colorants, indicators, and enzymes in the food industry. Therefore, this article compiles all consumer-applicable uses of fruit and vegetable waste into a single document.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Correspondence: ; Tel.: +006-088-320000 (ext. 8713); Fax: +006-088-320993
| | | | | |
Collapse
|
14
|
Sanou A, Konaté K, Kabakdé K, Dakuyo R, Bazié D, Hemayoro S, Dicko MH. Modelling and optimisation of ultrasound-assisted extraction of roselle phenolic compounds using the surface response method. Sci Rep 2023; 13:358. [PMID: 36611043 PMCID: PMC9825363 DOI: 10.1038/s41598-023-27434-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Extracts from Hibiscus sabdariffa L. (roselle) have been used traditionally as a food, in herbal medicine, in hot and cold beverages, as flavouring or coloring agent in the food industry. In vitro and in vivo studies and trials provide evidence, but roselle is poorly characterised phytochemically due to the extraction processes. The optimization of the extraction of phenolic compounds and their antioxidant activities is still a hot topic. In this study, the effect of solute/solvent ratio (33, 40 and 50 mg/mL), extraction temperature (40, 50 and 60 °C) and extraction time (30, 60 and 90 min) was evaluated through the content of phenolic compounds and antioxidant activity. A response surface methodology through a Box-Behnken design was applied and model fit, regression equations, analysis of variance and 3D response curve were developed. The results showed that TPC, TFC, DPPH and FRAP were significantly influenced by temperature, extraction time and solvent/solute ratio. Thus, TPC, TFC, DPPH and FRAP varied from 5.25 to 10.58 g GAE/100 g DW; 0.28 to 0.81 g QE/100 g DW; 0.24 to 0.70 mg/mL; 2.4 to 6.55 g AAE/100 g DW respectively. The optimal experimental condition (41.81 mg/mL; 52.35 °C and 57.77 min) showed a significant positive effect compared to conventional methods. The experimental values at this extraction condition show that this optimization model is technologically, financially and energetically viable as it requires a reasonable concentration, time and temperature.
Collapse
Affiliation(s)
- Abdoudramane Sanou
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso.
| | - Kiessoun Konaté
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
- Applied Sciences and Technologies Training and Research Unit, University of Dedougou, B.P.176, Dedougou, Burkina Faso
| | - Kaboré Kabakdé
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - Roger Dakuyo
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - David Bazié
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| | - Sama Hemayoro
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
- Laboratory of Biochemistry and Chemistry Applied (LABIOCA), University Joseph KI-ZERBO, 09 P.O. Box 848, Ouagadougou, Burkina Faso
| | - Mamoudou Hama Dicko
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI-ZERBO, 03 B.P. 7021, Ouagadougou, Burkina Faso
| |
Collapse
|
15
|
Wang ST, Dan YQ, Zhang CX, Lv TT, Qin Z, Liu HM, Ma YX, He JR, Wang XD. Structures and biological activities of proanthocyanidins obtained from chinese quince by optimized subcritical water-ethanol extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Fermentation as a Promising Tool to Valorize Rice-Milling Waste into Bio-Products Active against Root-Rot-Associated Pathogens for Improved Horticultural Plant Growth. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, water extracts from fermented (F), ultrasonicated (US), and enzyme-hydrolyzed (E) rice bran (RB) were evaluated against sixteen fungal plant stem and root-rot-associated pathogens. The effects of pre-treated RB additives on plant growth substrate (PGS) on bean and tomato seed germination, stem height and root length of seedlings, and chlorophyll concentration in plants were analyzed. The results showed that US-assisted pre-treatments did not affect protein content in RB, while 36 h semi-solid fermentation (SSF) reduced protein content by 10.3–14.8%. US initiated a 2.9- and 2-fold increase in total sugar and total phenolics (TPC) contents compared to the untreated RB (3.89 g/100 g dw and 0.61 mg GAE/g dw, respectively). Lactic acid (19.66–23.42 g/100 g dw), acetic acid (10.54–14.24 g/100g dw), propionic acid (0.40–1.72 g/100 g dw), phenolic compounds (0.82–1.04 mg GAE/g dw), among which phenolic acids, such as p-coumaric, cinnamic, sinapic, vanillic, and ferulic, were detected in the fermented RB. The RBF extracts showed the greatest growth-inhibition effect against soil-born plant pathogens, such as Fusarium, Pythium, Sclerotinia, Aspergillus, Pseudomonas, and Verticillium. Beans and tomatoes grown in RBUS+E- and RBF-supplemented PGS increased the germination rate (14–75%), root length (21–44%), and stem height (25–47%) compared to seedlings grown in PGS. The RB additives increased up to 44.6–48.8% of the chlorophyll content in both plants grown under greenhouse conditions. The results indicate that the biological potential of rice-milling waste as a plant-growth-promoting substrate component can be enhanced using solid-state fermentation with antimicrobial LABs and US processing.
Collapse
|
17
|
Zampar GG, Zampar IC, Beserra da Silva de Souza S, da Silva C, Bolanho Barros BC. Effect of solvent mixtures on the ultrasound-assisted extraction of compounds from pineapple by-product. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Shen H, Wang J, Ao J, Cai Y, Xi M, Hou Y, Li M, Luo A. Inhibitory kinetics and mechanism of active compounds in green walnut husk against α-glucosidase: Spectroscopy and molecular docking analyses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Tiozon RJN, Sartagoda KJD, Serrano LMN, Fernie AR, Sreenivasulu N. Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends Food Sci Technol 2022; 127:14-25. [PMID: 36090468 PMCID: PMC9449372 DOI: 10.1016/j.tifs.2022.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Background Scope and approach Key findings and conclusion Phenolic compounds are critical in avoiding metabolic disorders associated with oxidative stress. Breeding cereal crops to enrich phenolic compounds in grains contributes to personalized nutrition. A diet rich in cereal phenolics likely to increase human gut health, thereby lowering the risk of non-communicable illness.
Collapse
Affiliation(s)
- Rhowell Jr. N. Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kristel June D. Sartagoda
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Luster May N. Serrano
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
- Corresponding author.
| |
Collapse
|
20
|
Nguyen TCV, Trinh LTT, Nguyen KL, Nguyen HC, Tran TD. Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and their Antioxidant Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Šic Žlabur J, Radman S, Opačić N, Rašić A, Dujmović M, Brnčić M, Barba FJ, Castagnini JM, Voća S. Application of Ultrasound as Clean Technology for Extraction of Specialized Metabolites From Stinging Nettle ( Urtica dioica L.). Front Nutr 2022; 9:870923. [PMID: 35669064 PMCID: PMC9165585 DOI: 10.3389/fnut.2022.870923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Nettle is a highly valued medicinal plant that is still largely neglected, both in terms of nutrition and use for pharmacological purposes. Tinctures, i.e., alcoholic extracts, are becoming increasingly popular nettle products, mainly because they allow better availability of phytochemicals and their stability over a longer period of time. The production of alcoholic extracts is a chemically demanding process that is still usually carried out using conventional techniques, which have numerous drawbacks. The use of green technologies such as ultrasound-assisted extraction (UAE), which is characterized by high efficiency of phytochemical extraction, shorter treatment time, and a much lower environmental footprint, is a suitable and sustainable solution. Therefore, the aim of this study is to determine the influence of the extraction method, conventional and ultrasound (by varying two ultrasound equipment systems), time and ethanol concentration on the extraction of specialized metabolites from nettle powder. Ultrasonic extraction using a probe system significantly contributed to increase the ascorbic acid yield, polyphenolic compounds, and antioxidant capacity of nettle extracts compared to conventional extraction. In addition, when a probe system was used during UAE, significantly less time was required for isolation of individual specialized metabolites compared to ultrasonic extraction in the bath. Ethanol concentration (50 and 80% v/v) also proved to be an important factor in the efficiency of extraction of specialized metabolites, with 80% ethanol being more effective for the isolation of ascorbic acid and pigment compounds (chlorophyll and carotenoids), while 50% v/v for the extraction of polyphenolic compounds. It can be concluded that extraction with the ultrasonic probe system is much more efficient in obtaining higher yields of specialized metabolites from nettle powder in a shorter time (average process duration 5-10 min) both compared to UAE in the bath and classical extraction. However, optimization of the key factors of time, solvent type, and ultrasonic power is necessary to maintain the nutritional quality of the nettle extract in order to obtain a final product with a high specialized metabolites content, antioxidant capacity, and functional value. The future application of alcoholic nettle extracts is based on the fact that these products have significant potential as functional foods and pharmacological preparations for the treatment of a number of but also to strengthen the immune system, mainly due to the rich nutritional composition and high content of various specialized metabolites. The prepared extracts can be safely taken orally by diluting the tinctures with water immediately before ingestion.
Collapse
Affiliation(s)
- Jana Šic Žlabur
- University of Zagreb Faculty of Agriculture, Zagberb, Croatia
| | - Sanja Radman
- University of Zagreb Faculty of Agriculture, Zagberb, Croatia
| | - Nevena Opačić
- University of Zagreb Faculty of Agriculture, Zagberb, Croatia
| | - Anamaria Rašić
- University of Zagreb Faculty of Agriculture, Zagberb, Croatia
| | - Mia Dujmović
- University of Zagreb Faculty of Agriculture, Zagberb, Croatia
| | - Mladen Brnčić
- University of Zagreb Faculty of Food Technology and Biotechnology, Zagreb, Croatia
| | - Francisco J. Barba
- Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Preventive Medicine and Public Health, Nutrition and Food Science Area, Universitat de València, Vicent Andrés Estellés, València, Spain
| | - Juan Manuel Castagnini
- Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Preventive Medicine and Public Health, Nutrition and Food Science Area, Universitat de València, Vicent Andrés Estellés, València, Spain
| | - Sandra Voća
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
22
|
Javed M, Belwal T, Ruyuan Z, Xu Y, Li L, Luo Z. Optimization and Mechanism of Phytochemicals Extraction from Camellia Oleifera Shells Using Novel Biosurfactant Nanobubbles Solution Coupled with Ultrasonication. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02793-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Optimization of Phenolics Extraction from Strobilanthes cusia Leaves and Their Antioxidant Activity. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
25
|
Abstract
Rye (Secale cereale L.) is abundantly cultivated in countries like Europe and North America, particularly in regions where soil and climate conditions are unfavorable for the growth of other cereals. Among all the cereals generally consumed by human beings, rye grains are characterized by the presence of the highest content of fiber. They are also a rich source of many phytochemical compounds, which are mainly distributed in the outer parts of the grain. This review focuses on the current knowledge regarding the characteristics of rye bran and wholemeal rye flour, as well as their applications in the production of both food and nonfood products. Previous studies have shown that the physicochemical properties of ground rye products are determined by the type of milling technique used to grind the grains. In addition, the essential biologically active compounds found in rye grains were isolated and characterized. Subsequently, the possibility of incorporating wholemeal rye flour, rye bran, and other compounds extracted from rye bran into different industrial products is discussed.
Collapse
|
26
|
Qian ZM, Wu Z, Huang Q, Wang CX, Tan GY, Li WJ, Sun WY, Lv GP, Gao H. Development of an eco-friendly and fast HPLC method for quantitative analysis of four nucleosides in Cordyceps and related products. Chin J Nat Med 2021; 19:954-960. [PMID: 34961593 DOI: 10.1016/s1875-5364(22)60162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 10/19/2022]
Abstract
An eco-friendly and fast HPLC method was developed for the determination of adenosine, inosine, guanosine and uridine in Cordyceps and related products (fermented mycelia of Hirsutella sinensis andPaecilomyces hepiali). The sample was ultrasonically extracted using 0.5% phosphoric acid solutions for 2.5 min. Sample separation was performed on a Poroshell SB-Aq column (50 mm × 4.6 mm, 2.7 μm) using eco-friendly mobile phase consisting of formic acid and ammonium formate aqueous solution at a flow rate of 1.0 mL·min-1. The detection wavelength was 260 nm. The developed HPLC method showed good linearity with correlation coefficients of 1.0000 in the test range. Good precision, repeatability and stability of this method were also observed (RSD ≤ 2.81%). The recovery ranged from 91.84%-105.19% (RSD ≤ 2.59%). Compared with reported methods, the current method did not use harmful organic solvent and took only 10.5 min. It obtained a high eco-score of 91 by the "Analytical Eco-Scale" tool. The developed method is eco-friendly and fast, which is suitable for the quality evaluation of Cordyceps and related products.
Collapse
Affiliation(s)
- Zheng-Ming Qian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Ruyuan HEC Pharm Co., Ltd., Shaoguan 512700, China
| | - Zi Wu
- Ruyuan HEC Pharm Co., Ltd., Shaoguan 512700, China
| | - Qi Huang
- Ruyuan HEC Pharm Co., Ltd., Shaoguan 512700, China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guo-Yin Tan
- Ruyuan HEC Pharm Co., Ltd., Shaoguan 512700, China
| | - Wen-Jia Li
- Ruyuan HEC Pharm Co., Ltd., Shaoguan 512700, China
| | - Wan-Yang Sun
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gen-Pin Lv
- Ruyuan HEC Pharm Co., Ltd., Shaoguan 512700, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
27
|
Preparation and aroma analysis of flavonoid-rich ginkgo seeds fermented using rice wine starter. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Kasote D, Tiozon RN, Sartagoda KJD, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:771276. [PMID: 34917106 PMCID: PMC8670417 DOI: 10.3389/fpls.2021.771276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Rhowell N. Tiozon
- International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hameeda Itagi
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Priyabrata Roy
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Nese Sreenivasulu
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
29
|
Jadhav HB, Annapure US, Deshmukh RR. Non-thermal Technologies for Food Processing. Front Nutr 2021; 8:657090. [PMID: 34169087 PMCID: PMC8217760 DOI: 10.3389/fnut.2021.657090] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Food is subjected to various thermal treatments during processes to enhance its shelf-life. But these thermal treatments may result in deterioration of the nutritional and sensory qualities of food. With the change in the lifestyle of people around the globe, their food needs have changed as well. Today's consumer demand is for clean and safe food without compromising the nutritional and sensory qualities of food. This directed the attention of food professionals toward the development of non-thermal technologies that are green, safe, and environment-friendly. In non-thermal processing, food is processed at near room temperature, so there is no damage to food because heat-sensitive nutritious materials are intact in the food, contrary to thermal processing of food. These non-thermal technologies can be utilized for treating all kinds of food like fruits, vegetables, pulses, spices, meat, fish, etc. Non-thermal technologies have emerged largely in the last few decades in food sector.
Collapse
Affiliation(s)
- Harsh Bhaskar Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
30
|
Ultrasound-Assisted Extraction of Phenolic Compounds from Moroccan Lavandula stoechas L.: Optimization Using Response Surface Methodology. J CHEM-NY 2021. [DOI: 10.1155/2021/8830902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Secondary plant metabolites, in particular phenolic compounds, are characterized by great diversity in the plant kingdom and are widely used in the medical and industrial fields. The extraction of these compounds represents a critical step, and the differences in extraction conditions strongly affect the yields and the total concentrations of polyphenols in the extracts. In this way, the objective of the present study was to optimize the extraction parameters of the polyphenols from Lavandula stoechas using the extraction technique assisted by ultrasound. Yield and the total concentration of polyphenols have been optimized, taking into account three variables, the extraction time (min), the ethanol concentration (%), and the solvent/extract ratio (ml/g). The optimum extraction yield (31.88%) was obtained by ensuring the following parameters: an ethanol concentration of 40%, a liquid/solid ratio of 30 ml/g, and a time processing of 32.62 min. The maximum concentration of total polyphenols (190.14 mg gallic acid equivalents (GAE)/g) was obtained after 21.5 min of extraction, with a liquid/solid ratio of 30 ml/g and a concentration of ethanol at 40%. In order to obtain the maximum yield (24.9%) and the total concentration of polyphenols (190.14 mg GAE/g) simultaneously, the following parameters must be adjusted: an extraction time of 21.5 min, a liquid/solid ratio of 30 ml/g, and a concentration of ethanol at 40%. The experimental values of the yield and the total concentration of the polyphenols were in good agreement with the predicted values, which suggests that the ultrasonic extraction model adopted in this study is validated.
Collapse
|