1
|
Jeong H, Oh I. Physicochemical and structural properties of vegan mayonnaise prepared with peanut sprout oil and aquafaba. Food Chem X 2025; 27:102463. [PMID: 40297664 PMCID: PMC12036073 DOI: 10.1016/j.fochx.2025.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Peanut sprout oil (PSO), rich in unsaturated fatty acids, and aquafaba, a chickpea-derived emulsifier, were used to formulate vegan mayonnaise. This study examined the impact of different aquafaba-to-oil ratios (PA1: 33:60, PA2: 28:65, PA3: 23:70) on the physicochemical, microstructural, and sensory properties of the formulations. As aquafaba content decreased, pH values, centrifugal and thermal stabilities were reduced. Emulsions with less aquafaba had larger oil droplets, leading to weaker emulsion stability and texture. Among the samples, PA1 exhibited the most desirable characteristics, including firmness and physical stability comparable to conventional egg-based mayonnaise. Microstructural analysis confirmed that smaller and more uniform droplets contributed to improved stability. PA1 formulations had the highest oxidative stability, and the absence of egg yolk did not increase lipid oxidation. Sensory evaluation revealed that PA1 received the highest scores for overall acceptability. These findings support the use of PSO and aquafaba as effective ingredients in vegan mayonnaise formulations.
Collapse
Affiliation(s)
- Hyunjin Jeong
- Department of Food Science & Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Imkyung Oh
- Department of Food Science & Technology, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
2
|
Abdoollahi S, Ariaii P, Hosseini SE, Esmaeili M, Bagheri R. Impact of chia seed protein hydrolysate and apple pomace pectin on the properties of egg-free mayonnaise. Heliyon 2025; 11:e41278. [PMID: 39811345 PMCID: PMC11730206 DOI: 10.1016/j.heliyon.2024.e41278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigates the properties of egg-free mayonnaise prepared using chia seed protein hydrolysate (CSPH) and pectin extracted from apple pomace (PA) as alternatives to egg, comparing it to traditional egg-based mayonnaise. Chia seed protein was hydrolyzed using Protamex and Bromelain enzymes, while apple pectin was extracted through acid hydrolysis at 90 °C. Four mayonnaise treatments were prepared: T1 (control: 6 % egg), T2 (4 % egg + 1 % CSPH + 1 % PA), T3 (2 % egg + 2 % CSPH + 2 % PA), and T4 (0 % egg + 3 % CSPH + 3 % PA). The physicochemical, textural, and sensory properties of the mayonnaise samples were evaluated. The CSPH produced with the Protamex enzyme exhibited a higher protein content and greater degree of hydrolysis (P < 0.05), establishing it as a suitable egg substitute. Replacing egg with CSPH and PA resulted in increased acidity, physical and thermal stability, viscosity, firmness, and adhesiveness of the mayonnaise, while reducing lightness, pH, and overall sensory scores. Treatments T3 and T4 demonstrated superior overall properties compared to other treatments; however, T3 received the highest sensory scores. These findings suggest that pectin and hydrolyzed protein can effectively replace egg in mayonnaise production, offering a viable alternative for individuals with egg allergies and those seeking healthier options.
Collapse
Affiliation(s)
- Sahar Abdoollahi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed Ebrahim Hosseini
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahro Esmaeili
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Roya Bagheri
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
3
|
Mohammadi S, Alimi M, Shahidi S, Shokoohi S. Investigating the physicochemical, rheological, and sensory properties of low-fat mayonnaise prepared with amaranth protein as an egg yolk replacer. Food Sci Nutr 2024; 12:5147-5161. [PMID: 39055190 PMCID: PMC11266923 DOI: 10.1002/fsn3.4163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 07/27/2024] Open
Abstract
This study investigated the possibility of using amaranth protein isolate (API) as a plant-based substitute for egg yolk (EY) in the preparation of low-fat mayonnaise (LFM). The alkali extraction/acidic precipitation method was used to isolate amaranth protein; its functional properties were then studied. The results showed that besides its great water and oil absorption capacities, API had better emulsifying capacity and significantly higher (p < .05) emulsion stability at pH 2.0 than alkali pH values. Five mayonnaise samples with different API/EY combination ratios (%) (i.e., 0/0.75, 0.25/0.5, 0.375/0.375, 0.5/0.25, and 0.75/0) were prepared. The color, emulsion stability (ES), freeze-thaw stability (FTS), droplet size, structure, rheology, and sensory properties of samples were examined. API replacement showed no adverse effects on the L* value, ES, and sensory attributes (p > .05). Low API concentrations (0.25% and 0.375%) significantly (p < .05) increased the droplet size and decreased the FTS of LFM emulsion. High API concentrations (0.5% and 0.75%) had no significant effect (p > .05) on droplet size and formed emulsions with more tightly packed oil droplets. The Cross model was chosen best to describe the flow behavior of LFM samples (R 2 = 0.99). The sample with 0.75% API had significantly (p < .05) the highest values of η o (zero-shear viscosity) and λ (relaxation time), indicating greater interaction between the emulsion particles. All samples showed a weak gel structure (G' > G"). In conclusion, API can be considered an appropriate substitute for EY in LFM production, which can benefit human health and offer a new strategy for preparing vegan products.
Collapse
Affiliation(s)
- Sahar Mohammadi
- Department of Food Science and Technology, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Mazdak Alimi
- Department of Food Science and Technology, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Seyed‐Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
| | - Shirin Shokoohi
- Chemical, Polymeric and Petrochemical Technology Development Research DivisionResearch Institute of Petroleum IndustryTehranIran
| |
Collapse
|
4
|
Lee KY, Han CY, Rahman WU, Harinarayanan NC, Park CE, Choi SG. Quality Characteristics of Vegan Mayonnaise Produced Using Supercritical Carbon Dioxide-Processed Defatted Soybean Flour. Foods 2024; 13:1170. [PMID: 38672843 PMCID: PMC11048837 DOI: 10.3390/foods13081170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Emulsifiers, like egg yolk (EY), are necessary for the formation of mayonnaise, which is an oil-in-water type of colloid. This study aimed to assess the potential of defatted soybean powder treated with supercritical carbon dioxide (DSF) to enhance the quality of plant-based mayonnaise as plant-based alternatives gain popularity. This study involved the production of DSF and the comparison of its quality attributes to those of mayonnaise made with varying amounts of control soy flour (CSF), DSF, and EY. It was found that mayonnaise made with an increased quantity of DSF showed better emulsion stability, viscosity, and a smaller, more uniform particle size when compared with CSF mayonnaise. Additionally, DSF mayonnaise was generally rated higher in sensory evaluation. The addition of approximately 2% DSF positively influenced the emulsion and sensory properties of the vegan mayonnaise, indicating that DSF is a promising plant-based alternative emulsifier for the replacement of animal ingredients.
Collapse
Affiliation(s)
- Kyo-Yeon Lee
- Department of Food Science and Technology, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Chae-Yeon Han
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea;
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Wasif Ur Rahman
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Nair Chithra Harinarayanan
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Chae-Eun Park
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Sung-Gil Choi
- Department of Food Science and Technology, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| |
Collapse
|
5
|
Senna C, Soares L, Egea MB, Fernandes SS. The Techno-Functionality of Chia Seed and Its Fractions as Ingredients for Meat Analogs. Molecules 2024; 29:440. [PMID: 38257357 PMCID: PMC10819138 DOI: 10.3390/molecules29020440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.
Collapse
Affiliation(s)
- Caroline Senna
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Luiza Soares
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| | - Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Km 01, Rural Area, Rio Verde 75901-970, Brazil
| | - Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros, Rio Grande 96203-900, Brazil; (C.S.); (L.S.)
| |
Collapse
|
6
|
Rathee S, Ojha A, Singh KRB, Arora VK, Prabhakar PK, Agnihotri S, Chauhan K, Singh J, Shukla S. Revolutionizing goat milk gels: A central composite design approach for synthesizing ascorbic acid-functionalized iron oxide nanoparticles decorated alginate-chitosan nanoparticles fortified smart gels. Heliyon 2023; 9:e19890. [PMID: 37809974 PMCID: PMC10559278 DOI: 10.1016/j.heliyon.2023.e19890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Goat milk gels (GMGs) are popular food due to their high water content, low-calorie density, appealing taste, texture enhancers, stability, and satiety-enhancing characteristics, making them ideal for achieving food security and zero hunger. The GMGs were optimized using the central composite design matrix of response surface methodology using goat milk powder (35-55 g), whole milk powder (10-25 g), and potato powder (10-15 g) as independent variables. In contrast, complex modulus, flow stress, and forward extrudability were chosen as dependent variables. The maximum value of complex modulus 33670.9 N, good flow stress 7863.6 N, and good extrudability 65.32 N was achieved under optimal conditions. The optimized goat milk gel was fortified with ascorbic acid-coated iron oxide nanoparticle (magnetic nature) decorated alginate-chitosan nanoparticles (AA-MNP@CANPs), making it nutritionally rich in an economically feasible way-the decorated AA-MNP@CANPs characterized for size, shape, crystallinity, surface charge, and optical characteristics. Finally, the optimized fortified smart GMGs were further characterized via Scanning electron microscopy, Rheology, Texture profile analysis, Fourier transforms infrared (FTIR), and X-Ray Diffraction (XRD). The fortified smart GMGs carry more nutritional diversity, targeted iron delivery, and the fundamental sustainability development goal of food security.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Kshitij RB. Singh
- Department of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vinkel Kumar Arora
- Department of Food Engineering, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Pramod Kumar Prabhakar
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Shekhar Agnihotri
- Department of Agriculture and Environment Sciences, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli, Sonipat, India
| | - Jay Singh
- Department of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shruti Shukla
- Department of Nanotechnology, North-Eastern Hill University (NEHU), Shillong, Meghalaya, India
| |
Collapse
|
7
|
Auer J, Östlund J, Nilsson K, Johansson M, Herneke A, Langton M. Nordic Crops as Alternatives to Soy-An Overview of Nutritional, Sensory, and Functional Properties. Foods 2023; 12:2607. [PMID: 37444345 DOI: 10.3390/foods12132607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Soy (Glycine max) is used in a wide range of products and plays a major role in replacing animal-based products. Since the cultivation of soy is limited by cold climates, this review assessed the nutritional, sensory, and functional properties of three alternative cold-tolerant crops (faba bean (Vicia faba), yellow pea (Pisum sativum), and oat (Avena sativa)). Lower protein quality compared with soy and the presence of anti-nutrients are nutritional problems with all three crops, but different methods to adjust for these problems are available. Off-flavors in all pulses, including soy, and in cereals impair the sensory properties of the resulting food products, and few mitigation methods are successful. The functional properties of faba bean, pea, and oat are comparable to those of soy, which makes them usable for 3D printing, gelation, emulsification, and extrusion. Enzymatic treatment, fermentation, and fibrillation can be applied to improve the nutritional value, sensory attributes, and functional properties of all the three crops assessed, making them suitable for replacing soy in a broad range of products, although more research is needed on all attributes.
Collapse
Affiliation(s)
- Jaqueline Auer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johanna Östlund
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Klara Nilsson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Anja Herneke
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
8
|
Vieira MR, Simões S, Carrera-Sánchez C, Raymundo A. Development of a Clean Label Mayonnaise Using Fruit Flour. Foods 2023; 12:foods12112111. [PMID: 37297356 DOI: 10.3390/foods12112111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past few years, clean label food has been growing, meaning that consumers are searching for shorter and simpler ingredient lists composed of familiar and natural ingredients. The objective of the present work was to develop a vegan clean label mayonnaise, replacing the additives with fruit flour obtained from fruit reduced commercial value. The mayonnaises were prepared by replacing the egg yolk with 1.5% (w/w) lupin and faba proteins, while fruit flour (apple, nectarine, pear, and peach flour) was incorporated to substitute sugar, preservatives, and colorants. Texture profile analysis and rheology-small amplitude oscillatory measurements were performed to evaluate the impact of the fruit flour on mechanical properties. The mayonnaise antioxidant activity was also analyzed in terms of color, pH, microbiology, and stability measurements. The results showed that mayonnaises produced with fruit flour had better structure parameters in terms of viscosity, and texture, but also improved pH and antioxidant activity (p < 0.05) compared to the standard mayonnaise (mayonnaise without fruit flour). The incorporation of this ingredient into mayonnaise increases the antioxidant potential, though it is in lower concentrations compared to the fruit flours that compose them. Nectarine mayonnaise showed the most promising results in terms of texture and antioxidant capacity (11.30 mg equivalent of gallic acid/100 g).
Collapse
Affiliation(s)
- Maria Rocha Vieira
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Sara Simões
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Cecilio Carrera-Sánchez
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
9
|
Yiu CCY, Liang SW, Mukhtar K, Kim W, Wang Y, Selomulya C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023; 9:gels9050366. [PMID: 37232958 DOI: 10.3390/gels9050366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes. Finally, the potential applications of plant-based emulsion gels, such as dairy and meat alternatives, condiments, baked goods, and functional foods, were discussed with a focus on sensory properties and consumer acceptance. This study found that the implementation of plant-based emulsion gel in food is promising to date despite persisting challenges. This review will provide valuable insights for researchers and industry professionals looking to understand and utilize plant-based food emulsion gels.
Collapse
Affiliation(s)
- Canice Chun-Yin Yiu
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Sophie Wenfei Liang
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
10
|
Formation, texture, and stability of yolk-free mayonnaise: Effect of soy peptide aggregates concentration. Food Chem 2023; 403:134337. [DOI: 10.1016/j.foodchem.2022.134337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
|
11
|
Ozcan İ, Ozyigit E, Erkoc S, Tavman S, Kumcuoglu S. Investigating the physical and quality characteristics and rheology of mayonnaise containing aquafaba as an egg substitute. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Lu Z, Lee PR, Yang H. Chickpea flour and soy protein isolate interacted with κ-carrageenan via electrostatic interactions to form egg omelets analogue. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Huang ZX, Lin WF, Zhang Y, Tang CH. Freeze-thaw-stable high internal phase emulsions stabilized by soy protein isolate and chitosan complexes at pH 3.0 as promising mayonnaise replacers. Food Res Int 2022; 156:111309. [DOI: 10.1016/j.foodres.2022.111309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
|
14
|
Radical Scavenging Activity and Physicochemical Properties of Aquafaba-Based Mayonnaises and Their Functional Ingredients. Foods 2022; 11:foods11081129. [PMID: 35454717 PMCID: PMC9027175 DOI: 10.3390/foods11081129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A plant-based diet has become more popular as a pathway to transition to more sustainable diets and personal health improvement in recent years. Hence, vegan mayonnaise can be proposed as an egg-free, allergy friendly vegan substitute for full-fat conventional mayonnaise. This study intends to evaluate the effect of aquafaba from chickpeas and blends of refined rapeseed oil (RRO) with different cold-pressed oils (10% of rapeseed oil—CPRO, sunflower oil—CPSO, linseed oil—CPLO or camelina oil—CPCO) on the radical scavenging, structural, emulsifying, and optical properties of novel vegan mayonnaise samples. Moreover, the functional properties and radical scavenging activity (RSA) of mayonnaise ingredients were evaluated. Aquafaba-based emulsions had a higher RSA than commercial vegan mayonnaise, determined by QUick, Easy, Novel, CHEap and Reproducible procedures using 2,2-diphenyl-1-picrylhydrazyl (QUENCHER-DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (QUENCHER-ABTS). Oxidative parameters such as peroxide values (PV), anisidine values (AnV), total oxidation (TOTOX) indexes and acid values (AV) of the proposed vegan mayonnaises were similar to those for commercial mayonnaises. Moreover, aquafaba-based samples had smaller oil droplet sizes than commercial vegan mayonnaise, which was observed using confocal laser scanning microscopy. The novel formulas developed in this study are promising alternatives to commercial vegan emulsions.
Collapse
|
15
|
Martínez-Martí J, Quiles A, Moraga G, Llorca E, Hernando I. High Internal Phase Emulsions Preparation Using Citrus By-Products as Stabilizers. Foods 2022; 11:foods11070994. [PMID: 35407081 PMCID: PMC8997458 DOI: 10.3390/foods11070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
The citrus juice industry produces about 50% of by-products. Citrus pomace (CP) contains many polysaccharides (mainly cellulose and pectin), which could act as stabilizers and emulsifiers. The aim of this work was to obtain high internal phase emulsions (HIPEs) using unmodified CP at different concentrations to valorize citrus by-products. The synergic effect of pea protein isolate (PPI) with CP to stabilize the HIPEs was also studied. HIPEs structure was analyzed using rheological and microscopy studies as well as color and physical stability of the emulsions. According to rheological data, all samples exhibited a solid-like behavior, as elastic modulus (G’) was higher than viscous modulus (G’’) within the viscoelastic linear region; as % CP and % PPI increased, greater values of G’ and apparent viscosity (η) were achieved. Microscopic images showed that oil droplets had a polyhedral shape and were enclosed by a thin layer of CP and PPI. Increasing concentrations of CP and PPI enhanced oil droplets packaging. Emulsions’ physical stability was better when adding PPI. The results showed that stable HIPEs with 1.25% of CP and PPI over 0.5% can be obtained. These HIPEs could be used to formulate emulsions for food applications, such as mayonnaises, fillings, or creams.
Collapse
|
16
|
Huang ZX, Lin WF, Zhang Y, Tang CH. Outstanding Freeze-Thaw Stability of Mayonnaise Stabilized Solely by a Heated Soy Protein Isolate. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Muñoz‐González R, Pino C, Henríquez H, Villanueva F, Riquelme A, Montealegre R, Agostini D, Batista‐González A, Leiva G, Contreras RA. Elucidation of antimicrobial and antioxidant activities of selected plant‐based mayonnaise‐derived essential oils against lactic acid bacteria. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rodrigo Muñoz‐González
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Carla Pino
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Héctor Henríquez
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Francisca Villanueva
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Angeline Riquelme
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Romina Montealegre
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Davide Agostini
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
- Wageningen University and Research Wageningen The Netherlands
| | - Ana Batista‐González
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Gabriela Leiva
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| | - Rodrigo A. Contreras
- Research Unit, Department of Research and Development (R&D) The Not Company SpA Santiago of Chile Chile
| |
Collapse
|
18
|
Abdel-Haleem AMH, Omran AA, Hassan HE. Value addition of broken pulse proteins as emulsifying agents. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
|
20
|
Alternative protein from Pereskia aculeata Miller leaf mucilage: technological potential as an emulsifier and fat replacement in processed mortadella meat. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03669-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|