1
|
Chen HUIYING, Xiong BIXIA, Huang RONGBING, Ni YING, Li XIA. Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109441. [PMID: 39778376 DOI: 10.1016/j.plaphy.2024.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp. Based on proteomics analysis, a total of nine differential proteins are involved in the flavonoid metabolic process, which involves the following chalcone isomerase, flavonol synthase and anthocyanin synthasein. These proteins play important regulatory roles in anthocyanin biosynthesis and are the key regulators in anthocyanin accumulation. qRT-PCR was used to identify nine structural genes (PePAL2, PePAL4, PeC4H1, Pe4CL5, Pe4CL6, Pe4CL7, PeCHS2, PeCHS3 and PeUFGT2) playing key regulatory roles in anthocyanin synthesis in purple passion fruit pericarp. This study is expected to lay a foundation for the subsequent exploration of the regulatory mechanism of anthocyanin biosynthesis and the functional identification of related genes in passion fruit pericarp, and also to provide data support for the in-depth utilization of passion fruit resources.
Collapse
Affiliation(s)
- H U I-Y I N G Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China; Zhaoqing University, Zhaoqing, China.
| | - B I-X I A Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - R O N G-B I N G Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Y I N G Ni
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - X I A Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
2
|
Zhang J, Tao S, Hou G, Zhao F, Meng Q, Tan S. Phytochemistry, nutritional composition, health benefits and future prospects of Passiflora: A review. Food Chem 2023; 428:136825. [PMID: 37441935 DOI: 10.1016/j.foodchem.2023.136825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Passiflora, also known as "passion fruit", is widely grown in tropical and subtropical regions. It is not only eaten raw but is also widely used in processed foods. Various extracts, juices and isolated compounds show a wide range of health effects and biological activities, such as antioxidant, anti-inflammatory, sedative, and neuroprotective effects. In this review, we not only review the phytochemical properties of Passiflora but also highlight the potential of Passiflora for food applications and the use of all parts as a source of ingredients for medicines and cosmetics that promote health and well-being. This will provide theoretical support for the integrated use of such natural products.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Siyu Tao
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Shenpeng Tan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
3
|
Huo D, Dai J, Yuan S, Cheng X, Pan Y, Wang L, Wang R. Eco-friendly simultaneous extraction of pectins and phenolics from passion fruit (Passiflora edulis Sims) peel: Process optimization, physicochemical properties, and antioxidant activity. Int J Biol Macromol 2023:125229. [PMID: 37301339 DOI: 10.1016/j.ijbiomac.2023.125229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
The objective of this study was to simultaneously extract passion fruit (Passiflora edulis) peel pectins and phenolics using deep eutectic solvents, to evaluate their physicochemical properties and antioxidant activity. By taking L-proline: citric acid (Pro-CA) as the optimal solvent, the effect of extraction parameters on the yields of extracted passion fruit peel pectins (PFPP) and total phenolic content (TPC) was. and the highest TPC (9.68 mg GAE/g DW) were attained under 90 °C, extraction solvent pH = 2, extraction time of 120 min and L/S ratio of 20 mL/g. In addition, Pro-CA-extracted pectins (Pro-CA-PFPP) and HCl-extracted pectins (HCl-PFPP) were subjected to high performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), thermogram analysis (TG/DTG) and rheological measurements. Results verified that the Mw and thermal stability of Pro-CA-PFPP were higher than those of HCl-PFPP. The PFPP solutions featured a non-Newtonian behavior, and compared with commercially pectin solution, PFPP solution exhibited a stronger antioxidant activity. Additionally, passion fruit peel extract (PFPE) exhibited stronger antioxidant effects than PFPP. The results of ultra-performance liquid chromatography hybrid triple quadrupole-linear ion trap mass spectrometry (UPLC-Qtrap-MS) and high performance liquid chromatography (HPLC) analysis showed that (-)-epigallocatechin, gallic acid, epicatechin, kaempferol-3-O-rutin and myricetin were the main phenolic compounds in PFPE and PFPP. Our results suggest that Pro-CA can be considered as an eco-friendly solvent for high-efficient extraction of high-value compounds from agricultural by-products.
Collapse
Affiliation(s)
- Dongxue Huo
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jincheng Dai
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Siyu Yuan
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaoqing Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| | - Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
4
|
Lu Y, Wang R, Hu T, He Q, Chen ZS, Wang J, Liu L, Fang C, Luo J, Fu L, Yu L, Liu Q. Nondestructive 3D phenotyping method of passion fruit based on X-ray micro-computed tomography and deep learning. FRONTIERS IN PLANT SCIENCE 2023; 13:1087904. [PMID: 36714758 PMCID: PMC9878569 DOI: 10.3389/fpls.2022.1087904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Passion fruit is a tropical liana of the Passiflora family that is commonly planted throughout the world due to its abundance of nutrients and industrial value. Researchers are committed to exploring the relationship between phenotype and genotype to promote the improvement of passion fruit varieties. However, the traditional manual phenotyping methods have shortcomings in accuracy, objectivity, and measurement efficiency when obtaining large quantities of personal data on passion fruit, especially internal organization data. This study selected samples of passion fruit from three widely grown cultivars, which differed significantly in fruit shape, size, and other morphological traits. A Micro-CT system was developed to perform fully automated nondestructive imaging of the samples to obtain 3D models of passion fruit. A designed label generation method and segmentation method based on U-Net model were used to distinguish different tissues in the samples. Finally, fourteen traits, including fruit volume, surface area, length and width, sarcocarp volume, pericarp thickness, and traits of fruit type, were automatically calculated. The experimental results show that the segmentation accuracy of the deep learning model reaches more than 0.95. Compared with the manual measurements, the mean absolute percentage error of the fruit width and length measurements by the Micro-CT system was 1.94% and 2.89%, respectively, and the squares of the correlation coefficients were 0.96 and 0.93. It shows that the measurement accuracy of external traits of passion fruit is comparable to manual operations, and the measurement of internal traits is more reliable because of the nondestructive characteristics of our method. According to the statistical data of the whole samples, the Pearson analysis method was used, and the results indicated specific correlations among fourteen phenotypic traits of passion fruit. At the same time, the results of the principal component analysis illustrated that the comprehensive quality of passion fruit could be scored using this method, which will help to screen for high-quality passion fruit samples with large sizes and high sarcocarp content. The results of this study will firstly provide a nondestructive method for more accurate and efficient automatic acquisition of comprehensive phenotypic traits of passion fruit and have the potential to be extended to more fruit crops. The preliminary study of the correlation between the characteristics of passion fruit can also provide a particular reference value for molecular breeding and comprehensive quality evaluation.
Collapse
Affiliation(s)
- Yuwei Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Wang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Tianyu Hu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang He
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Zhou Shuai Chen
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Jinhu Wang
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Lingbo Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Lejun Yu
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Biomedical Engineering, Hainan University, Haikou, China
| |
Collapse
|
5
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|