1
|
Chen X, Feng J, Ahn J, Vasilis V, Ding T. Inactivation of foodborne pathogens by non-thermal technologies. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:103-132. [PMID: 40023559 DOI: 10.1016/bs.afnr.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Non-thermal treatments are current trends in food safety, the application of these technologies may lessen the influence of heat on food quality. The non-thermal food preservation techniques enable the food industry to meet regulations for product safety and shelf life. Common non-thermal techniques include cold plasma, ionizing radiation, ultraviolet light, pulsed electric fields, and high-pressure processing. This chapter provides a quick summary of the most current uses of these technologies for food preservation. In addition, a succinct description of the process used to inactivate foodborne microorganisms in food has been provided.
Collapse
Affiliation(s)
- Xiuqin Chen
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P.R. China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jinsong Feng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, zhejiang University, Jiashan, China
| | - Valdramidis Vasilis
- Athens Department of Chemistry, National and Kapodistrian University, Athens, Greece
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Geng Z, Ye P, Zhou L, Fu H, Chen X, Wang Y, Wang Y. Pasteurization of Salmonella spp. in black fungus ( Auricularia auricula) powder by radio frequency heating. FOOD SCI TECHNOL INT 2024; 30:3-17. [PMID: 36065562 DOI: 10.1177/10820132221123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radio frequency (RF) heating has been studied to inactivate bacteria in some powder foods. In this study, a 6 kW, 27.12 MHz RF system was used to pasteurize Salmonella in black fungus (Auricularia auricula) powder. The effects of different conditions (initial aw, electrodes gaps, particle sizes) on RF heating rate and uniformity were investigated. The results showed that RF heating rate was significantly (p < 0.05) improved with decreasing electrodes gap and increasing initial aw, and the heating rate was the slowest when the particle size was 120-160 mesh. However, these factors had no significant (p > 0.05) influence on heating uniformity. RF pasteurization of Salmonella in black fungus powder was also studied. The results showed that, to inactivate Salmonella for 5 log reductions in the cold spot (the center of surface layer), the time needed and bacteria heat resistance at designated temperature (65, 75, 85 °C) decreased with increasing aw, and the first order kinetics and Weibull model could be used to fit inactivation curves of Salmonella with well goodness. Quality analysis results showed that although RF pasteurization had no significant (p > 0.05) effect on Auricularia auricula polysaccharide (AAP) and total polyphenols, obvious changes were found on color. Results suggested that RF pasteurization can be considered as an effective pasteurization method for black fungus powder.
Collapse
Affiliation(s)
- Zheng Geng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Liangfu Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Bhoir SA, Kanatt SR. Radiation processing of papad - A sustainable method to improve safety and shelf life. Appl Radiat Isot 2023; 201:111017. [PMID: 37690166 DOI: 10.1016/j.apradiso.2023.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Papad is a popular traditional Indian snack food that is also consumed as an accompaniment to meals. The papad industry in India is predominantly a cottage industry, mainly run by women. Due to microbial contamination and infestation, papad has a shelf life of only a few months. However, increased domestic consumption and export requirements necessitate a longer shelf life. Chemical preservatives are generally added to increase shelf life. Our studies have shown that radiation processing (2 kGy) can be used to extend the shelf life. Unirradiated samples spoiled in three months with visible fungal growth and insect infestation. Irradiated (2 kGy) papad had a shelf life of one year, was sensorily acceptable, showed no microbial counts, and hence has great export potential.
Collapse
Affiliation(s)
- Shraddha A Bhoir
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Sweetie R Kanatt
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
4
|
Apaydın D, Tırpancı Sivri G, Demirci AŞ. Modeling the γ-irradiation inactivation kinetics of foodborne pathogens Escherichia coli O157:H7 , Salmonella, Staphylococcus aureus and Bacillus cereus in instant soup. FOOD SCI TECHNOL INT 2023:10820132231210317. [PMID: 37899579 DOI: 10.1177/10820132231210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The objective of the present study was to assess the inactivation kinetics of γ-irradiation of selected foodborne pathogens in instant soup. Escherichia coli O157:H7 (ATCC 25922), Salmonella enterica subsp. enterica serovar Enteritidis (ATCC 13076), Staphylococcus aureus (ATCC 2592), and Bacillus cereus (ATCC 11778) were inoculated into instant soup and irradiated at various doses of 0 (control), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and 10.0 kGy using 60Co source. The radiation response of these four major foodborne disease pathogens in instant soup was tested. As expected, the pathogen population decreased with increasing irradiation dose. By comparing bacterial resistance in instant soups according to D10 values, E coli O157: H7 was the most radio-resistant bacteria (D10 of 1.580 kGy), followed by Salmonella (D10 of 1.160 kGy), S aureus (D10 of 0.775 kGy), B cereus (D10 of 0.462 kGy). For modeling of inactivation kinetics, both, the conventional first-order linear model and Weibull model were compared and the goodness of fit of these models was investigated. Weibull model produced a better fit to the data. This research has shown that γ-irradiation was effective to eliminate pathogens in instant soup and it can be a great way to assure the microbiological safety of the instant soup.
Collapse
Affiliation(s)
- Demet Apaydın
- Vocational School of Social Sciences, Department of Hotel, Restaurant and Catering, Hitit University, Corum, Türkiye
| | - Göksel Tırpancı Sivri
- Food Engineering Department, Faculty of Agriculture, Tekirdağ Namık Kemal Univerisity, Tekirdağ, Türkiye
| | - Ahmet Ş Demirci
- Food Engineering Department, Faculty of Agriculture, Tekirdağ Namık Kemal Univerisity, Tekirdağ, Türkiye
| |
Collapse
|
5
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Effect of γ-irradiation in combination with natural antimicrobial formulation on microbial inactivation, protein digestibility and quality of mothers’ milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Ozbek Yazici S, Ozmen İ. Ultrasound assisted extraction of phenolic compounds from
Capparis Ovata
var canescens fruit using deep eutectic solvents. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sercan Ozbek Yazici
- Faculty of Health Sciences Department of Nutrition and Dietetics Burdur Mehmet Akif Ersoy University Burdur Turkey
| | - İsmail Ozmen
- Art and Science Faculty Department of Chemistry Suleyman Demirel University Isparta Turkey
| |
Collapse
|
8
|
Gaikwad PS, Sarma C, Negi A, Pare A. Alternate Food Preservation Technology. Food Chem 2021. [DOI: 10.1002/9781119792130.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Rahman M, Islam MA, Das KC, Salimullah M, Mollah MZI, Khan RA. Effect of gamma radiation on microbial load, physico-chemical and sensory characteristics of common spices for storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3579-3588. [PMID: 34366475 PMCID: PMC8292502 DOI: 10.1007/s13197-021-05087-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
The effect of gamma radiation on the decontamination of microbial population, physico-chemical, radiation sensitivity and sensory characteristics of common spices for storage were evaluated. Spices were irradiated with gamma doses of 0 (as control), 2, 4, 6, 8 and 10 kGy, packed in the glass vials and stored at room temperature (22 ± 2°C) in the laboratory. In this research, Bacillus, Salmonella and Listeria species were identified in un-irradiated spice samples. Results also indicated that gamma radiation reduced the total microbial population compared to control and optimum gamma radiation doses (6 kGy for red chili and turmeric; 4 kGy for cumin, coriander, garlic and black pepper; 2 kGy for ginger powder samples) were identified for decontamination of the organisms in the studied spices. It was concluded that no significant differences before and after gamma radiation were observed in physico-chemical, nutritional and sensory properties but significantly changed in microbial load in spices samples.
Collapse
Affiliation(s)
- Mahfuzur Rahman
- Department of Nuclear Science & Engineering, Military Institute of Science and Technology, Dhaka, 1216 Bangladesh
| | - M. A. Islam
- Institute of Nuclear Science & Technology, Atomic Energy Research Establishment, Savar, Dhaka, 1349 Bangladesh
| | - Keshob C. Das
- National Institute of Biotechnology, Savar, Dhaka, 1349 Bangladesh
| | - Md. Salimullah
- National Institute of Biotechnology, Savar, Dhaka, 1349 Bangladesh
| | - M. Z. I. Mollah
- Institute of Radiation and Polymer Technology, Atomic Energy Research Establishment, Savar, Dhaka, 1349 Bangladesh
| | - Ruhul A. Khan
- Institute of Radiation and Polymer Technology, Atomic Energy Research Establishment, Savar, Dhaka, 1349 Bangladesh
| |
Collapse
|