1
|
Velopoulos I, Dimopoulou M, Chen J, Ritzoulis C. Mucoadhesion and Mucins in Oral Processing: Their Role in Food Interaction, Texture, and Sensory Perception. J Texture Stud 2024; 55:e70000. [PMID: 39600065 DOI: 10.1111/jtxs.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
This is a review of mucus, and its principal component, mucins, in oral processing; it examines oral processing from the viewpoint of mucins being integral functional constituents of the food after the latter's insertion into the mouth. Under this light, mucins are treated as an omni-present functional ingredient. The chemical physics of the bolus formation is examined, focused on the role of mucins in the process. The colloidal and rheological aspects of hydrocolloids-mucin systems are subsequently examined, highlighting the role of the oral glycoproteins in complex food models and complex foods. Following the physicochemical and mechanical description of the topic, mucus is examined as a determinant of a food's sensory attributes. Its role in oral sensations such as astringency is reviewed, with a special focus on phenol-mucin interactions. The effect of mucus on the perception of saltiness is then reviewed, and the ensuing strategies for structurally-based reduction of salt are considered. The review critically discusses the challenges and opportunities that emerge from the above, highlighting the role of mucins and their effect on food function.
Collapse
Affiliation(s)
- Ioannis Velopoulos
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Maria Dimopoulou
- School of Health and Life Science, Teesside University, Middlesbrough, UK
| | - Jianshe Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Institute of Food Oral Processing and Sensory Science, Zhejiang Gongshang University, Hangzhou, China
| | - Christos Ritzoulis
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Perrotis College, American Farm School, Thessaloniki, Greece
| |
Collapse
|
2
|
Tian X, Zheng X, Chen L, Wang Z, Liu BT, Bi Y, Li L, Shi H, Li S, Li C, Zhang D. Recent advances in photoluminescent fluorescent probe technology for food flavor compounds analysis. Food Chem 2024; 459:140455. [PMID: 39029422 DOI: 10.1016/j.foodchem.2024.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The real-time, precise qualitative and quantitative sensing of food flavor compounds is crucial for ensuring food safety, quality, and consumer acceptance. As indicators for food flavor labeling, it is vital to delve deep into the specific ingredient and content of food flavor compounds to assess the food flavor quality, but still facing huge challenges. Photoluminescent fluorescent probe technology, with fast detection and high sensitivity, has shown immense potentials in detecting food flavor compounds. In this review, the classification and optical sensing mechanism of photoluminescent fluorescent probe technology are described in detail. Besides, challenges in applying photoluminescent fluorescent probe technology to analyze food flavor compounds are outlined to indicate future research directions. We hope this review can provide an insight for the applications of photoluminescent fluorescent probe technology in the evaluation of food flavor quality in future.
Collapse
Affiliation(s)
- Xiaoxian Tian
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bai-Tong Liu
- Department of Chemistry, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Liang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haonan Shi
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dequan Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Tian X, Fang Q, Zhang X, Yu S, Dai C, Huang X. Visualization of Moisture Content, Reducing Sugars, and Chewiness in Bread During Oral Processing Based on Hyperspectral Imaging Technology. Foods 2024; 13:3589. [PMID: 39594005 PMCID: PMC11593189 DOI: 10.3390/foods13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
This study evaluated the differences in oral processing and texture perception of breads with varying compositions. The research investigated the dynamic changes in moisture content (MC), reducing sugars (RSs), and chewiness of the bolus formed from white bread (B0) and 50% whole-wheat bread (B50) during oral processing. Hyperspectral imaging (HSI) combined with chemometric methods was used to establish quantitative prediction models for MC, RSs, and chewiness, and to create visual distribution maps of these parameters. The results showed that B0 had a higher moisture content and a faster hydration rate than B50 during the initial stages of oral processing, indicating greater hydrophilicity and ease of saliva wetting. Additionally, the uniformity of moisture distribution in the bolus of B0 was higher than that of B50. B50 exhibited significantly lower RSs content and poorer distribution uniformity compared to B0. The primary differences in chewiness between the two types of bread were observed during the early stages of oral processing, with B50 requiring more chewing effort initially. This study demonstrated that HSI technology can effectively monitor and elucidate the compositional changes in food particles during oral processing, providing new insights into bread texture perception and offering a scientific basis for improving bread processing and texture.
Collapse
Affiliation(s)
- Xiaoyu Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China; (X.T.); (Q.F.); (X.Z.); (S.Y.)
| | - Qin Fang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China; (X.T.); (Q.F.); (X.Z.); (S.Y.)
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China; (X.T.); (Q.F.); (X.Z.); (S.Y.)
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China; (X.T.); (Q.F.); (X.Z.); (S.Y.)
| | - Chunxia Dai
- School of Electrical and Information Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China;
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China; (X.T.); (Q.F.); (X.Z.); (S.Y.)
| |
Collapse
|
4
|
Elizabeth Aguilar Fernández M, Valéria de Aguiar E, Carolina Conti A, Dias Capriles V. Oral processing of bakery products: An overview of current status and future outlook. Food Res Int 2024; 196:115044. [PMID: 39614555 DOI: 10.1016/j.foodres.2024.115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Food oral processing (FOP) is an emerging research topic that allows a better comprehension of the relation between intrinsic food factors (physicochemical and sensory properties), and human physiology and eating behaviours. FOP can then help in the design of novel and healthier food to meet both quality requirements and consumer needs. In this context, this review presents the current state of knowledge and new insights for future research concerning FOP of bakery products. The application of FOP in bakery science is new, with different protocols and related evaluation being applied, as detailed in this review. The current knowledge shows that bread structure and texture, influenced by formulation and process conditions, as well as the crust and shortenings present, impact bread breakdown and bolus formation, sensory perception, and food physiological effects such as glycaemic response, satiation, and satiety. For a better comprehension of oral processing, cross-modal perception between sensory attributes is used to understand consumer perception and this is carried out using both in vivo, and in vitro methods. This review highlighted the great potential of FOP to assist researchers and producers to face the current challenges relating to i - salt, fat and sugar reduction in bakery products to fulfil current food nutrition policies, ii - the design of healthier bakery products, and iii - the development of bakery products for consumers with special dietary requirements and ageing needs. In conclusion, FOP shows great potential to assist in the development of novel and healthier foods to meet actual food nutrition policies and consumer needs and should be more explored in bakery science and production.
Collapse
Affiliation(s)
- Marión Elizabeth Aguilar Fernández
- Federal University of São Paulo (UNIFESP), Institute of Health and Society (Campus Baixada Santista), Department of Biosciences. Rua Silva Jardim, 136, CEP 11015-020, Santos SP, Brazil
| | - Etiene Valéria de Aguiar
- Federal University of São Paulo (UNIFESP), Institute of Health and Society (Campus Baixada Santista), Department of Biosciences. Rua Silva Jardim, 136, CEP 11015-020, Santos SP, Brazil
| | - Ana Carolina Conti
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, Department of Food Engineering and Technology, Rua Cristóvão Colombo, 2265, CEP 15054-000, São José do Rio Preto SP, Brazil
| | - Vanessa Dias Capriles
- Federal University of São Paulo (UNIFESP), Institute of Health and Society (Campus Baixada Santista), Department of Biosciences. Rua Silva Jardim, 136, CEP 11015-020, Santos SP, Brazil.
| |
Collapse
|
5
|
Mesta-Corral M, Gómez-García R, Balagurusamy N, Torres-León C, Hernández-Almanza AY. Technological and Nutritional Aspects of Bread Production: An Overview of Current Status and Future Challenges. Foods 2024; 13:2062. [PMID: 38998567 PMCID: PMC11241233 DOI: 10.3390/foods13132062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Bakery products, especially bread, exist in many homes worldwide. One of the main reasons for its high consumption is that the main raw material is wheat, a cereal that can adapt to a wide variety of soils and climates. However, the nutritional quality of this raw material decreases during its industrial processing, decreasing the value of fibers, proteins, and minerals. Therefore, bread has become a product of high interest to increase its nutritional value. Due to the high consumption of bread, this paper provides a general description of the physicochemical and rheological changes of the dough, as well as the sensory properties of bread by incorporating alternative flours such as beans, lentils, and soy (among others). The reviewed data show that alternative flours can improve fiber, macro, and micronutrient content. The high fiber content reduces the quality of the texture of the products. However, new processing steps or cooking protocols, namely flour proportions, temperature, cooking, and fermentation time, can allow adjusting production variables and optimization to potentially overcome the decrease in sensory quality and preserve consumer acceptance.
Collapse
Affiliation(s)
- Mariana Mesta-Corral
- Food Products Research and Development Lab, Unidad Torreón, School of Biological Science, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
- Center for Interdisciplinary Studies and Research, Unidad Saltillo, Universidad Autonoma de Coahuila, Arteaga 25350, Coahuila, Mexico
| | - Ricardo Gómez-García
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Unidad Torreón, Facultad de Ciencias Biológicas, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
| | - Cristian Torres-León
- Research Center and Ethnobiological Garden, Unidad Torreón, Universidad Autonoma de Coahuila, Viesca 27480, Coahuila, Mexico
- Agri-Food and Agro-Industrial Bioeconomy Research Group, Unidad Torreón, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
| | - Ayerim Y Hernández-Almanza
- Food Products Research and Development Lab, Unidad Torreón, School of Biological Science, Universidad Autonoma de Coahuila, Torreón 27276, Coahuila, Mexico
| |
Collapse
|
6
|
Pu B, Meng R, Shi Y, Pu D. Decoding the Effect of Running on Flavor Perception Changes during Consumption of Sports Drinks. Foods 2024; 13:1266. [PMID: 38672938 PMCID: PMC11049042 DOI: 10.3390/foods13081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
An online survey was conducted to show that most respondents preferred sports drinks with sweet and fruity characteristics. Eleven sports drinks with higher consumers' preferences were further selected for aroma and taste evaluation. Temporal dominance of sensations analysis showed that fruity and fresh attributes were dominant, while sour and fruity sweet were dominant tastes during consumption. β-Damascenone, β-ionone, and linalool contributing to floral perception, γ-decalactone, ethyl cinnamate, and isoamyl acetate contributing to fruity perception, and menthol contributing to fresh perception were confirmed by odor activity value analysis. Running affected the nasal air flow and the saliva secretion, resulting in the flavor perception changing from fruity sweet, sweet, and fruity to sour because the recognition threshold decreased for sweet, fruity, floral, and fresh flavors and increased for saltiness, astringency, and sour tastes.
Collapse
Affiliation(s)
- Biwen Pu
- Department of Physical Education and Sport Research, Guangdong University of Finance, Guangzhou 510521, China;
- School of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Ruixin Meng
- China Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (R.M.); (Y.S.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yige Shi
- China Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (R.M.); (Y.S.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- China Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (R.M.); (Y.S.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
7
|
Pu D, Meng R, Qiao K, Cao B, Shi Y, Wang Y, Zhang Y. Electronic tongue, proton-transfer-reaction mass spectrometry, spectral analysis, and molecular docking characterization for determining the effect of α-amylase on flavor perception. Food Res Int 2024; 181:114078. [PMID: 38448095 DOI: 10.1016/j.foodres.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
The effects of α-amylase on of flavor perception were investigated via spectrum analysis, electronic tongue, on-line mass spectrometry, and molecular docking. Aroma release results showed that α-amylase exhibited variable release patterns of different aroma compounds. Electronic tongue analysis showed that the perception of bitterness, sweetness, sour, and saltiness was subtly increased and that of umami was significantly increased (p < 0.01) along with the increasing enzyme activity of α-amylase. Ultraviolet absorption and fluorescence spectroscopy analyses showed that static quenching occurred between α-amylase and eight flavor compounds and their interaction effects were spontaneous. One binding pocket was confirmed between the α-amylase and flavor compounds, and molecular docking simulation results showed that the hydrogen, electrostatic, and hydrophobic bonds were the main force interactions. The TYP82, TRP83, LEU173, HIS80, HIS122, ASP297, ASP206, and ARG344 were the key α-amylase amino acid residues that interacted with the eight flavor compounds.
Collapse
Affiliation(s)
- Dandan Pu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Ruixin Meng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Kaina Qiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Boya Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yige Shi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
8
|
Zhang W, Bai B, Du H, Hao Q, Zhang L, Chen Z, Mao J, Zhu C, Yan M, Qin H, Abd El-Aty A. Co-expression of metabolites and sensory attributes through weighted correlation network analysis to explore flavor-contributing factors in various Pyrus spp. Cultivars. Food Chem X 2024; 21:101189. [PMID: 38357376 PMCID: PMC10865235 DOI: 10.1016/j.fochx.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Flavor profiles of various Pyrus spp. cultivars exhibit significant variations, yet the underlying flavor-contributing factors remain elusive. In this investigation, a comprehensive approach encompassing metabolomics analysis, volatile fingerprint analysis, and descriptive sensory analysis was employed to elucidate the flavor disparities among Nanguoli, Korla fragrant pear, and Qiuyueli cultivars and uncover potential flavor contributor. The study comprehensively characterized the categories and concentrations of nonvolatile and volatile metabolites, and 925 metabolites were identified. Flavonoids and esters dominated the highest cumulative response, respectively. Utilizing weighted correlation network analysis (WGCNA), seven highly correlated modules were identified, yielding 407 pivotal metabolites. Further correlation analysis of the differential substances provided potential flavor constituents strongly associated with various sensory attributes; taste factors had a certain association with olfactory characteristics. Our findings demonstrated the manifestation of flavor was a result of the synergistic effect of various compounds; evaluation olfactory flavor necessitated a comprehensive consideration of taste substances.
Collapse
Affiliation(s)
- Wenjun Zhang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Bo Bai
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Hongxia Du
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Qian Hao
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lulu Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Zilei Chen
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Jiangsheng Mao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Chao Zhu
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Mengmeng Yan
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Hongwei Qin
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
9
|
Liang L, Hao Z, Zhang J, Sun B, Xiong J, Li K, Zhang Y. Characterization and sweetness-enhancing effect of peptides from yeast extract based on sensory evaluation and molecular docking approaches. Food Res Int 2024; 178:113908. [PMID: 38309861 DOI: 10.1016/j.foodres.2023.113908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Yeast extract (YE) is derived from the soluble component in yeast cells, which is rich in peptides and has been used as a sweet-enhancing agent. It has the potential to be utilized to produce natural sweet-flavored peptides or sweet-enhancing peptides. To study the synergistic effect and mechanism of sweetness-enhancing peptides derived from YE, ultrafiltration fraction with molecular weight less than 1 kDa was screened according to sensory analysis, which showed a synergistic sweetening effect in stevioside and mogroside solution. Twenty potential taste peptides were identified from the screened fractions, among which EV, AM, AVDNIPVGPN and VDNIPVGPN showed sweetness-enhancing effects on both stevioside and mogroside. The sweetener-receptor-peptide complex was constructed to investigate the interaction of stevioside and mogroside to taste receptor type 1 member 2 accompanied by these peptides. The results of the molecular docking indicated that new hydrophobic interactions (Leu 279, Pro 308, Val 309, etc.) and hydrogen bonds (Ser 40, Ala 43, Asp 278, etc.) were formed between sweeteners and active sites in the venus flytrap domain. In conclusion, the presence of sweetness-enhancing peptides from YE improved the binding stability of sweeteners and receptors by increasing the binding interaction, especially the hydrophobic interactions, which contribute to the synergistic effect of sweetness-enhancing peptides.
Collapse
Affiliation(s)
- Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Zhilin Hao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Xiong
- National Key Laboratory of Agricultural Microbiology core facility, Angel Yeast Co., Ltd., Yichang 443003, China
| | - Ku Li
- National Key Laboratory of Agricultural Microbiology core facility, Angel Yeast Co., Ltd., Yichang 443003, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Visalli M, Galmarini MV. Multi-attribute temporal descriptive methods in sensory analysis applied in food science: A systematic scoping review. Compr Rev Food Sci Food Saf 2024; 23:e13294. [PMID: 38284596 DOI: 10.1111/1541-4337.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Among descriptive sensory evaluation methods, temporal methods have a wide audience in food science because they make it possible to follow perception as close as possible to the moment when sensations are perceived. The aim of this work was to describe 30 years of research involving temporal methods by mapping the scientific literature using a systematic scoping review. Thus, 363 research articles found from a search in Scopus and Web of Science from 1991 to 2022 were included. The extracted data included information on the implementation of studies referring to the use of temporal methods (details related to subjects, products, descriptors, research design, data analysis, etc.), reasons why they were used and the conclusions they allowed to be drawn. Metadata analysis and critical appraisal were also carried out. A quantitative and qualitative synthesis of the results allowed the identification of trends in the way in which the methods were developed, refined, and disseminated. Overall, a large heterogeneity was noted in the way in which the temporal measurements were carried out and the results presented. Some critical research gaps in establishing the validity and reliability of temporal methods have also been identified. They were mostly related to the details of implementation of the methods (e.g., almost no justification for the number of consumers included in the studies, absence of report on panel repeatability) and data analysis (e.g., prevalence of use of exploratory data analysis, only 20% of studies using confirmatory analyses considering the dynamic nature of the data). These results suggest the need for general guidelines on how to implement the method, analyze and interpret data, and report the results. Thus, a template and checklist for reporting data and results were proposed to help increase the quality of future research.
Collapse
Affiliation(s)
- Michel Visalli
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne, Dijon, France
- INRAE, PROBE Research Infrastructure, ChemoSens Facility, Dijon, France
| | - Mara Virginia Galmarini
- CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Santa Fe, Argentina
- Facultad de Ingeniería y Ciencias Agrarias, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Quality relationship between smoked and air-dried bacon of Sichuan-Chongqing in China: Free amino acids, volatile compounds, and microbial diversity. Food Res Int 2023; 164:112274. [PMID: 36737892 DOI: 10.1016/j.foodres.2022.112274] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The quality formation of Chinese bacon is closely related to flavor compounds and microbial composition; however, the contribution of microbial to flavor has not been fully explored. Previous studies have focused on the differences in microorganisms and flavor substances in smoked bacon. Thus, this study aims to investigate the relationship among microorganisms, free amino acids (FAAs), and volatile compounds (VOCs) in bacon produced by different drying processes. We analyzed the microbial composition by sequencing the V3-V4 region of the 16S rDNA gene and the fungal ITS2 region and flavor substances using an amino acid analyzer and chromatography-mass spectrometry (GC-MS). Results of taste activity values (TVA) and partial least squares discriminant analysis (PLS-DA) revealed that the flavor components of the two types of bacon had general and specific characteristics, with the key FAAs (glutamic acid, lysine, and alanine) being comparable and the key VOCs being dissimilar. Based on non-metric multidimensional scaling (NMDS) and linear discriminant analysis effect size (LefSe), bacteria had more biomarkers than fungi. Correlation analysis demonstrated that microorganisms, particularly bacteria (Staphylococcus and Salinivibrio), are crucial in regulating and shaping the flavor of bacon. Some sub-abundance of bacteria such as Kocuria enrich the flavor of bacon. These findings indicate that the simultaneous fermentation of multiple microorganisms is conducive to the recreation of the artisan flavor of Chinese bacon.
Collapse
|
12
|
Pu D, Shan Y, Qiao K, Zhang L, Sun B, Zhang Y. Development of an Effective Protocol for Evaluating the Saltiness Intensity Enhancement of Umami Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:700-709. [PMID: 36534057 DOI: 10.1021/acs.jafc.2c06293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reducing sodium intake without decreasing saltiness perception remains an important target in the food industry. This study developed an effective protocol for evaluating the saltiness perception enhanced by umami compounds. Two sodium chloride solutions (2.00 and 6.00 g/L) were the preferred concentrations for consumers. Two-alternative forced-choice evaluation results confirmed that at a concentration of 2.00 g/L (sodium concentration), the highest replacement ratios of monosodium glutamate and l-alanine (Ala) were 10 and 20% in sodium chloride solution without saltiness intensity decrease, respectively. The highest replacement ratios of l-glycine (Gly) and Ala were 10 and 20% compared to 6.00 g/L, respectively. Temporal dominance of sensations analysis figured out that gum Arabic (GA) could compensate for the decrease of the retention time and increase the overall saltiness perception in the sodium-reduced sample. Quartz crystal microbalance with dissipation results showed that Ala and Gly could inhibit the binding of Na+ to mucin, thereby increasing the saltiness perception. GA exhibited the best saltiness enhancement effect in sodium-reduced solution by producing the nanoparticles from GA, decreasing the stability of the solution system, enhancing the loading effect of mucin on Na+, and prolonging the saltiness perception.
Collapse
Affiliation(s)
- Dandan Pu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing100048, China
| | - Yimeng Shan
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing100048, China
| | - Lili Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing100048, China
| |
Collapse
|
13
|
Chen J, Wu F, Wang H, Guo C, Zhang W, Luo P, Zhou J, Hao W, Yang G, Huang J. Identification of key taste components in Baccaurea ramiflora Lour. fruit using non-targeted metabolomics. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Shan Y, Pu D, Zhang J, Zhang L, Huang Y, Li P, Xiong J, Li K, Zhang Y. Decoding of the Saltiness Enhancement Taste Peptides from the Yeast Extract and Molecular Docking to the Taste Receptor T1R1/T1R3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14898-14906. [PMID: 36325587 DOI: 10.1021/acs.jafc.2c06237] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of saltiness or saltiness enhancement peptides is important to decrease the dietary risk factor of high sodium. Taste peptides in the yeast extract were separated by ultrafiltration and subsequently identified by UPLC-Q-TOF-MS/MS. The 377 identified peptides were placed into the umami receptor T1R1/T1R3. The results showed that eight taste peptides with higher binding energies were screened by molecular virtual docking, and the results revealed that Asp218, Ser276, and Asn150 of T1R1 play key roles in umami docking of peptides. The taste characteristic description and saltiness enhancement effect results suggested that PKLLLLPKP (sourness and umami, 0.18 mM), GGISTGNLN (sourness, 0.59 mM), LVKGGLIP (umami, 0.28 mM), and SSAVK (umami, 0.35 mM) had higher saltiness enhancement effects. The sigmoid curve analysis further confirmed that the taste detection threshold of the GGISTGNLN in the peptide and salt model (157.47 mg/L) was lower than 320.99 mg/L and exhibited a synergistic effect on saltiness perception, whereas SSAVK, PKLLLLPKP, and LVKGGLIP exhibited additive effects on the saltiness perception. This work also corroborated previous research, which indicated that the sourness and umami taste attributes could enhance the saltiness perception.
Collapse
Affiliation(s)
- Yimeng Shan
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Dandan Pu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Jingcheng Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Lili Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Yan Huang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Pei Li
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang443003, Hubei, China
| | - Jian Xiong
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang443003, Hubei, China
| | - Ku Li
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang443003, Hubei, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| |
Collapse
|
15
|
Shi Y, Pu D, Zhou X, Zhang Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022; 11:3408. [PMID: 36360025 PMCID: PMC9654595 DOI: 10.3390/foods11213408] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/11/2023] Open
Abstract
Organic acids could improve the food flavor, maintain the nutritional value, and extend the shelf life of food. This review summarizes the detection methods and concentrations of organic acids in different foods, as well as their taste characteristics and nutritional properties. The composition of organic acids varies in different food. Fruits and vegetables often contain citric acid, creatine is a unique organic acid found in meat, fermented foods have a high content of acetic acid, and seasonings have a wide range of organic acids. Determination of the organic acid contents among different food matrices allows us to monitor the sensory properties, origin identification, and quality control of foods, and further provides a basis for food formulation design. The taste characteristics and the acid taste perception mechanisms of organic acids have made some progress, and binary taste interaction is the key method to decode multiple taste perception. Real food and solution models elucidated that the organic acid has an asymmetric interaction effect on the other four basic taste attributes. In addition, in terms of nutrition and health, organic acids can provide energy and metabolism regulation to protect the human immune and myocardial systems. Moreover, it also exhibited bacterial inhibition by disrupting the internal balance of bacteria and inhibiting enzyme activity. It is of great significance to clarify the synergistic dose-effect relationship between organic acids and other taste sensations and further promote the application of organic acids in food salt reduction.
Collapse
Affiliation(s)
- Yige Shi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
Pu D, Shan Y, Wang J, Sun B, Xu Y, Zhang W, Zhang Y. Recent trends in aroma release and perception during food oral processing: A review. Crit Rev Food Sci Nutr 2022; 64:3441-3457. [PMID: 36218375 DOI: 10.1080/10408398.2022.2132209] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The dynamic and complex peculiarities of the oral environment present several challenges for controlling the aroma release during food consumption. They also pose higher requirements for designing food with better sensory quality. This requires a comprehensive understanding of the basic rules of aroma transmission and aroma perception during food oral processing and its behind mechanism. This review summarized the latest developments in aroma release from food to retronasal cavity, aroma release and delivery influencing factors, aroma perception mechanisms. The individual variance is the most important factor affecting aroma release and perception. Therefore, the intelligent chewing simulator is the key to establish a standard analytical method. The key odorants perceived from the retronasal cavity should be given more attention during food oral processing. Identification of the olfactory receptor activated by specific odorants and its binding mechanisms are still the bottleneck. Electrophysiology and image technology are the new noninvasive technologies in elucidating the brain signals among multisensory, which can fill the gap between aroma perception and other senses. Moreover, it is necessary to develop a new approach to integrate the relationship among aroma binding parameters, aroma concentration, aroma attributes and cross-modal reactions to make the aroma prediction model more accurate.
Collapse
Affiliation(s)
- Dandan Pu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yimeng Shan
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| | - Juan Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| | - Youqiang Xu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
17
|
Zhao D, Hu J, Zhou X, Chen W. Correlation between microbial community and flavour formation in dry-cured squid analysed by next-generation sequencing and molecular sensory analysis. Food Chem X 2022; 15:100376. [PMID: 36211785 PMCID: PMC9532723 DOI: 10.1016/j.fochx.2022.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
|
18
|
Raja V, Priyadarshini SR, Moses JA, Anandharamakrishnan C. A dynamic in vitro oral mastication system to study the oral processing behavior of soft foods. Food Funct 2022; 13:10426-10438. [PMID: 36102637 DOI: 10.1039/d2fo00789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bolus-oriented artificial oral mastication system was developed to simulate the dynamics of food mastication in the human mouth. The system consists of a chewing unit, a bolus forming unit, and provisions for the dynamic incorporation of saliva during mastication. The system performance was validated with in vivo trials (n = 25) considering time-dependent changes in particle size, textural attributes and rheological behavior of the bolus. Idli, a fermented and steamed black gram-rice-based Indian food was considered the model soft food for all trials measured in triplicates. The mastication dynamics were evaluated by analyzing bolus properties during every 3 s of mastication. Large strain shear rheology tests revealed that the viscosity of the sample decreased over time. Results of in vivo trials follow close trends in particle size and rheological behavior and have no significant change in correlation with in vitro mastication results. Similar observations were made in the half softening time of idli during mastication as determined using the relative change in hardness (hardness ratio (Ht/H0)) values fitted to the Weibull model. Also, a model to simulate the time-dependent changes in bolus adhesiveness was developed.
Collapse
Affiliation(s)
- Vijayakumar Raja
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur - 613005, Tamil Nadu, India.
| | - S R Priyadarshini
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur - 613005, Tamil Nadu, India.
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur - 613005, Tamil Nadu, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur - 613005, Tamil Nadu, India.
| |
Collapse
|
19
|
Guo F, Ma M, Yu M, Bian Q, Hui J, Pan X, Su X, Wu J. Classification of chinese fragrant rapeseed oil based on sensory evaluation and gas chromatography-olfactometry. Front Nutr 2022; 9:945144. [PMID: 35990337 PMCID: PMC9381969 DOI: 10.3389/fnut.2022.945144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Fragrant rapeseed oils and traditional pressed oils are increasingly popular in China owing to their sensory advantages. Many fragrant rapeseed oils are labeled by different fragrance types; however, the scientific basis for these differences is lacking. To identify the distinctive aroma and achieve fragrance classification, the sensory characteristics and aroma components of nine different fragrant rapeseed oils were analyzed via sensory evaluation and gas-chromatography-mass spectrometry-olfactometry. A total of 35 aroma compounds were found to contribute to the overall aroma. By using chemometrics methods, rapeseed oils were categorized into three fragrance styles: “strong fragrance,” “umami fragrance,” and “delicate fragrance.” In total, 10 aroma compounds were predicted to be the most effective compounds for distinguishing sensory characteristics of fragrant rapeseed oil. According to our results, this approach has excellent potential for the fragrance classification and quality control of rapeseed oil.
Collapse
Affiliation(s)
- Fei Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, China
| | - Mingjuan Ma
- COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, China.,Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, China.,Beijing Engineering Laboratory for Geriatric Nutrition Food Research, Beijing, China
| | - Miao Yu
- COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, China.,Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, China.,Beijing Engineering Laboratory for Geriatric Nutrition Food Research, Beijing, China
| | - Qi Bian
- COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, China.,Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, China.,Beijing Engineering Laboratory for Geriatric Nutrition Food Research, Beijing, China
| | - Ju Hui
- COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, China.,Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, China.,Beijing Engineering Laboratory for Geriatric Nutrition Food Research, Beijing, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxia Su
- COFCO Nutrition and Health Research Institute Co., Ltd., Beijing, China.,Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing, China.,Beijing Engineering Laboratory for Geriatric Nutrition Food Research, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.,Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| |
Collapse
|
20
|
Characterization of Taste Compounds and Sensory Evaluation of Soup Cooked with Sheep Tail Fat and Prickly Ash. Foods 2022; 11:foods11070896. [PMID: 35406983 PMCID: PMC8997404 DOI: 10.3390/foods11070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/27/2022] Open
Abstract
Sheep tail fat and prickly ash play an important role in improving the umami taste of mutton soup. In this work, the effects of prickly ash on key taste compounds in stewed sheep tail fat soup were investigated. Results showed that the taste intensity of sheep tail fat soup cooked with 0.2% prickly ash increased significantly. The concentration of organic acids and free amino acids in sheep tail fat soup significantly increased with the addition of prickly ash. The concentration of succinic acid (2.637 to 4.580 mg/g) and Thr (2.558 to 12.466 mg/g) increased the most among organic acids and amino acids, respectively. Spearman’s correlation analysis elucidated that seven taste compounds were positively correlated (correlation coefficient > 0.7) with the overall taste intensity of the soup sample including Thr, Asp, oxalic acid, lactic acid, citric acid, succinic acid, and ascorbic acid. Additional experiments and quantitative descriptive analysis further confirmed that Asp, lactic acid and citric acid were the key taste compounds to improve saltiness and umami taste in sheep tail fat soup with prickly ash.
Collapse
|
21
|
Screening of characteristic umami substances in preserved egg yolk based on the electronic tongue and UHPLC-MS/MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Huang Y, Pu D, Hao Z, Yang X, Zhang Y. The Effect of Prickly Ash ( Zanthoxylum bungeanum Maxim) on the Taste Perception of Stewed Sheep Tail Fat by LC-QTOF-MS/MS and a Chemometrics Analysis. Foods 2021; 10:foods10112709. [PMID: 34828990 PMCID: PMC8622103 DOI: 10.3390/foods10112709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
This work aims to explore the contribution of prickly ash (Zanthoxylum bungeanum Maxim) on the taste perception of stewed sheep tail fat. Liquid chromatography-tandem quadrupole time of flight mass spectrometry (LC-QTOF-MS) was applied to analyze the taste-related compounds. A total of 99 compounds in different sheep tail fat samples were identified. The semi-quantitative results showed that there were differences between the samples. The partial least squares discriminant analysis (PLS-DA) model without overfitting was used to investigate the effect of prickly ash. Eleven marker compounds were predicted with a variable importance for projection > 1, fold change > 2 and p < 0.05. An additional experiment showed that guanosine 5'-monophosphate, malic acid, inosine and adenosine 5'-monophosphate could improve the umami and saltiness taste of stewed sheep tail fat.
Collapse
|
23
|
Zhao B, Sun B, Wang S, Zhang Y, Zang M, Le W, Wang H, Wu Q. Effect of different cooking water on flavor characteristics of mutton soup. Food Sci Nutr 2021; 9:6047-6059. [PMID: 34760236 PMCID: PMC8565249 DOI: 10.1002/fsn3.2546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 01/07/2023] Open
Abstract
The mutton flavor is affected by cooking water significantly, and the flavor of mutton is delicious and widely loved by consumers through an extremely simple processing in northwest China, such as Inner Mongolia, Ningxia, and Xinjiang. The flavor shows obvious changes if get out of these areas even use the same raw meat, which may be caused by different cooking water. To determine whether and how the cooking water affect the mutton soup flavor, the elements in water, the flavor was studied by inductively coupled plasma mass spectrometry (ICP-MS), amino acid analyzer, and thermal desorption (TDS)-gas chromatography-mass spectrometry (GC-MS). Specifically, three water samples from different sources, Ningxia (NXW), Beijing (BJW), and ultrapure water from the laboratory (PUW), were used for cooking with Tan sheep's ribs to get different mutton soups. The inductively coupled plasma mass spectrometry (ICP-MS) results showed that the elements and the concentration of solutes in different water sources were significantly different. The NXW batch had the highest Na, Mg, K, and Sr concentrations, and Na in NXW water reached to 50.60 mg/L, which existed as Na+, significantly (p < .05) higher than BJW (8.63 mg/L) and PUW, which were important to the flavor of mutton soup. The PUW batch had the highest content of free amino acids, and the content of glutamic acid (Glu) reached to 17.89 μg/mL. The NXW batch had the highest content of taste nucleotides, and the content of 5´-IMP reached to 68.68 μg/ml. The volatiles of the three batches had significant differences, and only 40 volatiles were detected in all batches. Further flavor studies using electronic nose and electronic tongue showed significant differences in overall aroma and overall taste, especially bitterness, saltiness, and astringency. The results could provide a basis for improving the flavor quality for the mutton soup.
Collapse
Affiliation(s)
- Bing Zhao
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business University (BTBU)BeijingChina
- China Meat Research CentreBeijingChina
- Beijing Academy of Food SciencesBeijingChina
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business University (BTBU)BeijingChina
| | - Shouwei Wang
- China Meat Research CentreBeijingChina
- Beijing Academy of Food SciencesBeijingChina
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business University (BTBU)BeijingChina
| | - Mingwu Zang
- China Meat Research CentreBeijingChina
- Beijing Academy of Food SciencesBeijingChina
| | - Wang Le
- China Meat Research CentreBeijingChina
- Beijing Academy of Food SciencesBeijingChina
| | - Hui Wang
- China Meat Research CentreBeijingChina
- Beijing Academy of Food SciencesBeijingChina
| | - Qianrong Wu
- China Meat Research CentreBeijingChina
- Beijing Academy of Food SciencesBeijingChina
| |
Collapse
|
24
|
Tabak T, Yılmaz İ, Tekiner İH. Investigation of the changes in volatile composition and amino acid profile of a gala-dinner dish by GC-Ms and LC-MS/MS analyses. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Kong Y, Zhou C, Zhang L, Tian H, Fu C, Li X, Zhang Y. Comparative analysis of taste components of three seasoning bases prepared via stir‐frying, enzymatic hydrolysis, and thermal reaction. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yan Kong
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
| | - Chenchen Zhou
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
| | - Lili Zhang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
- College of Food Science and Engineering Tianjin University of Science and Technology Tianjin China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an China
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute Suzhou China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Jinzhou China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing China
| |
Collapse
|
26
|
Improving the taste profile of reduced-salt dry sausage by inoculating different lactic acid bacteria. Food Res Int 2021; 145:110391. [PMID: 34112394 DOI: 10.1016/j.foodres.2021.110391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to investigate the effects of lactic acid bacteria (LAB) including Lactobacillus curvatus, Lactobacillus sakei, Weissella hellenica, and Lactobacillus plantarum on the taste profiles of reduced-salt dry sausage. The results showed that the inoculation of LAB increased the moisture content and water activity and decreased the pH values of the sausages. Higher contents of total free amino acids (FAAs) were observed in the inoculated sausages (P < 0.05), especially for the sausages inoculated with L. curvatus, W. hellenica, and L. plantarum. The sausage inoculated with W. hellenica also had higher contents of organic acids than the other sausages (P < 0.05). In addition, partial least squares regression analysis demonstrated that the taste properties characterized by electronic tongue were consistent with the sensory evaluation results, and FAAs and organic acids contributed to the taste properties of the reduced-salt dry sausage. These results highlight the potential of W. hellenica and L. plantarum for the production of reduced-salt dry sausage with improved taste profiles.
Collapse
|
27
|
Xia B, Ni ZJ, Hu LT, Elam E, Thakur K, Zhang JG, Wei ZJ. Development of meat flavors in peony seed-derived Maillard reaction products with the addition of chicken fat prepared under different conditions. Food Chem 2021; 363:130276. [PMID: 34144426 DOI: 10.1016/j.foodchem.2021.130276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
To prepared Maillard reaction products (MRPs) enriched with chicken flavor, the effects of chicken fats on peony seed-derived MRPs were evaluated. The thermal treatments, lipase enzymatic hydrolysis and lipoxygenase with subsequent mild thermal treatments were applied to oxidized chicken fats before their use in the Maillard reaction. Different oxidized chicken fats led to diverse chemical properties and varied volatile compounds. The addition of oxidized chicken fat increased the meaty of MRPs. The chicken fat promoted the Maillard reaction, which produced more oxygenated compounds; however, it reduced the sulfur compounds. Correlation analysis of the chemical properties of chicken fat and the major volatile compounds showed that by controlling the chemical properties of chicken fat, it might be possible to control the content of some volatile compounds of chicken fat and MRPs. Our data elucidated that chicken fat contributes to the development of meat flavors after oxidation and thermal treatments.
Collapse
Affiliation(s)
- Bing Xia
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhi-Jing Ni
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Long-Teng Hu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
28
|
Wang J, Ming Y, Li Y, Huang M, Luo S, Li H, Li H, Wu J, Sun X, Luo X. Characterization and comparative study of the key odorants in Caoyuanwang mild-flavor style Baijiu using gas chromatography-olfactometry and sensory approaches. Food Chem 2021; 347:129028. [PMID: 33503572 DOI: 10.1016/j.foodchem.2021.129028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 01/22/2023]
Abstract
Caoyuanwang Baijiu (CYW), a mild-flavor style Baijiu (MSB), is popular in northern China. However, there is a lack of studies reporting its aroma-active components. The aroma compounds of five CYW samples were analyzed using gas chromatography-olfactory-mass spectrometry coupled with aroma extraction dilution analysis. Fifty-five aroma-active compounds were identified in CYW, of which 27 had odor activity values ≥ 1. Reconstituted models successfully simulated the aroma profiles of CYW. The omission tests elucidated that β-damascenone, dimethyl trisulfide, ethyl pentanoate, butanoic acid, ethyl acetate, 3-methylbutanal, ethyl lactate, hexanoic acid, γ-nonalactone, 3-hydroxy-2-butanone, ethyl butanoate, 1-propanol, 4-(ethoxymethyl)-2-methoxy-phenol, and vanillin were key odorants in CYW. The addition test confirmed the significant influence of dimethyl trisulfide on Chen-aroma note. Nine key odorants were identified as the differential quality-markers, and 85.71% key odorants were predicted using the partial least square regression (PLSR) analysis, indicating the applicability of PLSR in selecting the target compounds for omission tests.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuezhang Ming
- Inner Mongolia Taibus Banner Grassland Brewing Co. Ltd., Xilin Gol League 027000, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co. Ltd., Xilin Gol League 027000, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Siqi Luo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huifeng Li
- Inner Mongolia Taibus Banner Grassland Brewing Co. Ltd., Xilin Gol League 027000, China.
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiaotao Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xuelian Luo
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|