1
|
Fan Y, Gan R, Zhang Z, Xu J, Liu S, Bu Y, Cao C, Liu Q, Xia X, Kong B, Sun F. Flavor effect, application status, and research trend of umami peptides based on microbial fermentation in food. Food Microbiol 2025; 130:104769. [PMID: 40210398 DOI: 10.1016/j.fm.2025.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Umami peptides are important non-volatile compounds produced by protein degradation, contributing to food umami flavor and enhancing product quality. Microbial fermentation promotes the production of taste peptides, including umami peptides, which act as key flavor substances and precursors. Microbial-derived umami peptides are cost-effective, easy to produce, and a major source of umami peptide production. Although microbial fermentation of umami peptides has been extensively studied in preparation, screening, and evaluation, a systematic review of microbial fermentation is still lacking. Therefore, this paper aims to address the following aspects: (1) umami peptide taste characteristics, influencing factors, and preparation methods; (2) microbial sources of umami peptides; (3) the current application status of microbial fermentation-derived umami peptides in various foods; and (4) future directions for microbial fermentation of umami peptides. Consequently, this literature review seeks to offer insights for advancing microbial fermentation in umami peptide production.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Renjie Gan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziyuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiayu Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Sitong Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Bu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Li XA, Liu J, Zhang B, Wang J, Kong B, Ren J, Chen Q. Inoculation with autochthonous yeast strains in Harbin dry sausages with partial substitution of NaCl by KCl: Bacterial community structure and flavour profiles. Food Microbiol 2025; 128:104739. [PMID: 39952756 DOI: 10.1016/j.fm.2025.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
The effects of two autochthonous yeast strains (Pichia kudriavzevii and Debaryomyces hansenii) on the physicochemical characteristics, bacterial community structure, and flavour profile of the dry sausages with 40% substitution of NaCl by KCl were evaluated in this study. The results revealed that the inoculation of yeast strains increased the pH and yeast counts of low-sodium sausages. Higher contents of total esters, aldehydes, and ketones were detected in the inoculated sausages (P < 0.05). Based on the results of high-throughput sequencing, the inoculation of P. kudriavzevii decreased the abundance of Lactobacillus, Weissella, and Leuconostoc. However, the inoculation of D. hansenii increased the abundance of Lactobacillus, Weissella and Staphylococcus, which may help to inhibit the growth of pathogenic microorganisms in sausages. Electronic tongue analysis as well as sensory evaluation revealed that D. hansenii reduced bitter, astringent, and metallic tastes (P < 0.05). Overall, D. hansenii can be used as the prospective stater culture to compensate the flavour defects and improve the safety of the dry sausage with NaCl substitutes.
Collapse
Affiliation(s)
- Xiang-Ao Li
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Biying Zhang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiawang Wang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jing Ren
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
3
|
Yang Y, Yang P, Wen A, Zeng H, Liu N, Qin L, Zhou P. Dynamic Correlation Between Bacterial Communities and Volatile Compounds During Douchiba Fermentation. Food Sci Nutr 2025; 13:e70153. [PMID: 40196230 PMCID: PMC11975051 DOI: 10.1002/fsn3.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Douchiba is a traditional bacteria-fermented soybean product in Guizhou, refined through the following steps of soaking, steaming, koji-making, salt sprinkling, fermentation, pounding, drying, molding, and after-ripening. However, the dynamic alterations of microbiota and volatile compounds of Douchiba were seldom reported. In this work, the bacterial communities and volatile compounds during the fermentation process of Douchiba were explored by high-throughput sequencing and headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) techniques, respectively. Furthermore, the correlation between microbial communities and volatile compounds was analyzed with Spearman's method. The findings revealed that the diversity and evenness of bacteria increased during the fermentation process of Douchiba. The dominant bacteria genera included Bacillus, Staphylococcus, Tetragenococcus, Loigolactobacillus, and Virgibacillus. Bacillus dominated the bacterial communities throughout the fermentation process, and Staphylococcus, Tetragenococcus, Loigolactobacillus, and Virgibacillus also became the dominant genera in the fermentation and after-ripening stages. A total of 134 volatiles were identified. The main volatiles were ketones and alcohols in the koji-making stage, ketones and pyrazines in the fermentation stage, and acids in the after-ripening stage. In total, 26 compounds were selected as the main characteristic volatiles, including 2,3,5-trimethylpyrazine, 3-methyl-1-butanol, and indole, which endowed Douchiba with a specific flavor. Additionally, Bacillus was significantly positively correlated with isovaleraldehyde, benzaldehyde, and acetic acid. Staphylococcus was significantly positively correlated with indole, 3-methylbutanoic acid, and eucalyptol. Tetragenococcus, Loigolactobacillus, and Virgibacillus were significantly correlated with indole and estragole. The research establishes a theoretical foundation for better regulating the flavor quality of Douchiba products.
Collapse
Affiliation(s)
- Yurou Yang
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Panpan Yang
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Anyan Wen
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Haiying Zeng
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Na Liu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
| | - Likang Qin
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangChina
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou ProvinceGuiyangChina
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and FoodGuiyangChina
| | | |
Collapse
|
4
|
Li L, Belloch C, Flores M. The Aroma of Non-Fermented and Fermented Dry-Cured Meat Products: Savory and Toasted Odors. Foods 2025; 14:881. [PMID: 40077586 PMCID: PMC11899295 DOI: 10.3390/foods14050881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Volatile chemicals containing nitrogen and sulfur as key odors in dry-cured meat products have extremely low odor thresholds. These compounds play an important part in the overall uniqueness and characteristic flavor of dry-cured meat products, contributing to savory and toasted aroma sensations, respectively. In this review, we define the different volatiles and aroma compounds related to the flavor of dry-cured meat products. Moreover, the main differences regarding volatiles, aromas, and flavor profiles from non-fermented and fermented dry-cured meat products are summarized. Comparisons using the same volatile extraction techniques revealed that dry loins contained the most sulfur- and nitrogen-containing compounds, while complex flavor and aroma compounds in fermented sausages were greatly impacted by the fermentation process. The screening and quantification of savory and toasted odors showed that methionol, dimethyl sulfide, and 2-methyl-3-(methylthio)furan were mainly reported in non-fermented products, whereas pyrazines were mainly detected in fermented meat products. Finally, the different mechanisms in the generation of savory and toasted aromas, including chemical reactions and biochemical reactions by microorganisms (bacteria, yeast, and molds), are discussed. These discussions will help to better understand the complex flavor of dry-cured meat products.
Collapse
Affiliation(s)
| | | | - Mónica Flores
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Agustín Escardino Avenue 7, 46980 Paterna, Valencia, Spain; (L.L.); (C.B.)
| |
Collapse
|
5
|
Liu Y, Hu Y, Huang D, Bayinbate B, Zheng S, Xu B. The effects of fermented sausage quality driven by reduction of NaCl: Investigation into the microbial community and flavor profiles. Food Res Int 2025; 204:115867. [PMID: 39986753 DOI: 10.1016/j.foodres.2025.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
The primary objective of this study was to evaluate the impact of NaCl reduction (2.50 %, 2.25 %, 2.00 %, 1.75 %, and 1.50 %) on the physicochemical characteristics, microbial communities, flavor profile, and sensory characteristics of fermented sausage. The water activity increased with the reduction of the NaCl content from 2.50 % to 1.50 %, while the pH value, chewiness, and hardness decreased. High-throughput sequencing results showed that Staphylococcus saprophyticus, Staphylococcus kloosii, Latilactobacillus sakei, and Enterococcus pseudoavium were the dominant bacteria at the end of fermentation, and the 2.00 % NaCl treatment exhibits the highest bacterial diversity. A total of 32 volatile compounds were identified, of which there were 16 main volatile compounds. Sensory evaluation showed lower scores for chewiness, color, and flavor in sausages with less than 1.75 % NaCl. Furthermore, the correlation analysis showed that four bacterial species (Lb. sakei, S. saprophyticus, S. kloosii, and E. pseudoavium) were positively correlated with the major volatile compounds such as nonanal, ethyl propionate, ethyl hexanoate, and 1-hepten-3-one. Overall, it can be concluded that when NaCl content is reduced to less than 1.75 %, compensatory measures are needed to achieve better quality and flavor in fermented sausage. This study offers a thorough understanding of the association between bacterial communities and volatile flavors in low-salt fermented sausage.
Collapse
Affiliation(s)
- Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Anhui 230009, China
| | - Dewei Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Bayierta Bayinbate
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shasha Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Anhui 230009, China.
| |
Collapse
|
6
|
Fan Y, Badar IH, Liu Q, Xia X, Chen Q, Kong B, Sun F. Insights into the flavor contribution, mechanisms of action, and future trends of coagulase-negative staphylococci in fermented meat products: A review. Meat Sci 2025; 221:109732. [PMID: 39708546 DOI: 10.1016/j.meatsci.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
During fermentation, meat is pre-treated and cured to cultivate a diverse microflora, resulting in fermented meat products with distinctive flavors. Coagulase-negative staphylococcus holds a crucial role in all fermented meat products, contributing to the breakdown of proteins, carbohydrates, and fats, and the creation of flavor compounds. Fermentation technology has important research value and significance in fermented meat products. The optimization and improvement of flavor by CNS can be achieved by regulating the fermentation environment, initial microflora and processing conditions. The review explores the ways in which coagulase-negative staphylococci contribute to the flavors in fermented meat products. The mechanism of flavor substance formation and means of regulation in coagulase-negative staphylococci were also investigated. The review concludes by summarizing future development trends and drawing conclusions.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Iftikhar Hussain Badar
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Fan Y, Zhang K, Liu Q, Liu H, Wang H, Sun F, Kong B. Impact and correlation of fermentation temperature on the bacterial community, flavor characteristics, and proteolysis of Harbin dry sausages. Food Chem 2025; 464:141703. [PMID: 39447265 DOI: 10.1016/j.foodchem.2024.141703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Proteins undergo degradation to produce peptides and free amino acids, which in turn promote the production of volatile compounds with important contributions to the taste and aroma. This study investigated the effect of fermentation temperatures (8, 15, and 25 °C) on the bacterial community, flavor profile, and protein degradation of Harbin dry sausages. The physical and chemical properties were improved at 25 °C compared with 8 and 15 °C. Staphylococcus xylosus increased with the increase in fermentation temperature, whereas Latilactobacillus sakei decreased. The degree of protein degradation increased, and the content and proportion of taste peptides and free amino acids increased. Similarly, a higher fermentation temperature led to an increase in volatile compounds, such as aldehydes, alcohols, and esters. In conclusion, there is an inseparable relationship between proteolysis and microbial proteases. The fermentation temperature of 25 °C best contributed to the sensory quality and flavor characteristics of Harbin dry sausages.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kaida Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Yang Y, Zhou G, Ding Y, Shi W, Chen Y, Ge C, Xu B, Yang L. Microbiota dynamics and metabolic mechanisms in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus xylosus. Food Res Int 2025; 201:115680. [PMID: 39849797 DOI: 10.1016/j.foodres.2025.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Lactiplantibacillus plantarum and Staphylococcus xylosus are common starters for fermented sausages. Several studies have demonstrated the impact of these two strains on the quality of fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study aimed to investigate the effects of inoculation with various combinations of starters on the microbial communities and metabolic profiles of fermented sausages. High-throughput sequencing revealed that, during sausage fermentation, Firmicutes was the dominant bacterial phylum, and the primary microorganisms were Lactococcus, Staphylococcus, Lactobacillus, and Pseudomonas. On the last day of fermentation, the highest abundance of Staphylococcus was observed in the co-inoculation group. Furthermore, inoculated fermentation effectively inhibited the growth of pathogenic and spoilage bacteria. Metabolomic analysis of the four groups of samples identified 208 metabolites in positive ion mode and 109 in negative ion mode. A total of 31 differential metabolites were identified (P < 0.05, variable importance in the projection >1.5), primarily benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls. Five crucial differential metabolites (subaphylline, naringenin, 1-hexadecanol, beta-alanyl-L-lysine, and 3'-AMP) were identified as potential biomarkers for fermented sausages. Key differential metabolite metabolic pathways indicated that L. plantarum YR07 dominated in metabolite regulation during sausage fermentation, and S. xylosus Y-18 downregulated the fatty acid degradation pathway, which also affected the metabolism of fermented sausages. Co-cultivation of the two bacteria exhibited a synergistic effect on the metabolism of the fermented sausages. This study offers further insights into improving the quality of fermented sausages, thereby establishing a theoretical foundation for the production of excellent fermenters.
Collapse
Affiliation(s)
- Yulong Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Gang Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yining Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wenjing Shi
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yueqian Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Chunbo Ge
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Liu Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
9
|
Cao Q, Fan X, Xu J, Shi Z, Wang W, Wang Z, Sun Y, Xia Q, Zhou C, Pan D. Insights into the molecular mechanisms of lipid metabolism of air-dried goose on the formation of flavor substances by co-inoculation of lactic acid bacteria and staphylococcus based on GC-MS and lipidomics. Food Chem 2025; 463:141388. [PMID: 39342771 DOI: 10.1016/j.foodchem.2024.141388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Microorganisms and lipids always interact in a complex way in the meat matrix, which affects the flavor of meat products. This study aimed to examine the impact of complex fermentation with distinct microorganisms on fat oxidation, lipid profile, and the biochemical pathways involved in flavor substance formation. GC-MS analysis revealed that 12 key volatile substances including hexanal, heptanal, benzeneacetaldehyde, decanal, 1-nonanol, 1-hexanol, 1-octen-3-ol were responsible for the flavor variations in geese. Lipidomics analysis of three groups identified 440 lipid molecules, with triglycerides and glycerophospholipids being the most abundant categories. Spearman correlation analysis showed that 4 key volatile substances exhibited positive correlations with lysophosphatidylethanolamines, lysophosphatidycholines, phosphatidylcholines, phosphatidylethanolamines. The data presented herein facilitate an understanding of the lipid dynamics during fermentation and provide insights into the potential for controlling the flavor quality of fermented air-dried meat products.
Collapse
Affiliation(s)
- Qiongfang Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, China
| | - Zhaoshan Wang
- Jiangsu Ecolovo Food Limited Company, Suqian 223800, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
10
|
Jia X, Wang D, Meng AL, Lin YJ, Huang M, Gao P, Xu P, Chen H. Microbial composition of spoiled irradiated ready-to-eat chicken feet and their spoilage characteristics. Food Microbiol 2024; 124:104620. [PMID: 39244356 DOI: 10.1016/j.fm.2024.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
The spoilage of irradiated ready-to-eat chicken feet (RTECF) seriously affects the food's quality, resulting in package swelling and off-flavors, both of which are highly undesirable to stakeholders and consumers. To investigate the spoilage characteristics of irradiated RTECF and the microorganisms responsible for the spoilage and swelling, the changes in physicochemical properties, microbial community, and volatile organic compounds (VOCs) between normal and spoiled RTECF were evaluated. Compared with normal samples, the spoiled RTECF showed a higher pH value and total volatile basic nitrogen (TVB-N) value, lower color value, and texture features (P < 0.05). Acinetobacter, Pseudomonas, Lactobacillus, and Candida were the dominant genera responsible for RTECF spoilage as confirmed through both culture-dependent methods and high-throughput sequencing (HTS). The results of the verification for gas-producing strains showed that Lactobacillus brevis could cause RTECF packaging to swell. A total of 20 key VOCs were identified using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results of Pearson correlation analysis (|r|>0.8, P < 0.05) showed that 12 dominant core microbial genera had a significant effect on the flavor of RTECF before and after spoilage. This study provides a theoretical reference for solving the problem of RTECF spoilage and improving the overall quality of RTECF products.
Collapse
Affiliation(s)
- Xin Jia
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Ai-Lian Meng
- Sichuan Institute of Atomic Energy, Chengdu, 610101, Sichuan, PR China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, 610101, Sichuan, PR China
| | - Yong-Jie Lin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| | - Ming Huang
- Sichuan Institute of Atomic Energy, Chengdu, 610101, Sichuan, PR China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, 610101, Sichuan, PR China
| | - Peng Gao
- Sichuan Institute of Atomic Energy, Chengdu, 610101, Sichuan, PR China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, 610101, Sichuan, PR China.
| | - Pan Xu
- Sichuan Institute of Atomic Energy, Chengdu, 610101, Sichuan, PR China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, 610101, Sichuan, PR China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu, 610101, Sichuan, PR China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, 610101, Sichuan, PR China.
| |
Collapse
|
11
|
Yang Q, Feng Z, Chen Q, Liu H, Liu Q, Sun F, Kong B. Screening Zinc Protoporphyrin-Forming Lactic Acid Bacteria to Replace Nitrite in Meat Products. Foods 2024; 13:3808. [PMID: 39682881 DOI: 10.3390/foods13233808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Seventeen strains of LAB (lactic acid bacteria) were screened for their ability to form ZnPP (zinc protoporphyrin) by measuring fluorescence intensity. Three strains (Weissella viridescens JX11, Weissella viridescens MDJ8, and Lactobacillus pentosus Q) exhibited notable ZnPP-forming ability. The ferrochelatase enzyme activity of W. viridescens JX11 was significantly higher than that of the other two strains (p < 0.05). The three selected strains were then inoculated into minced meat to observe their effect on color development and quality properties. The a*-values of the bacteria-inoculated groups were significantly higher than those of the control group and lower than those of the nitrite group (p < 0.05). The visible bright red color of the inoculated groups was stronger than that of the control and inferior to the nitrite group, especially in cooked minced meat. The fluorescence intensities in inoculated groups were significantly higher than those of the control and nitrite groups (p < 0.05). The UV-Vis absorbance data at 417 nm indicated that inoculated groups exhibited higher absorbance compared to the control group (p < 0.05). These results indicate that high ZnPP-forming bacteria can enhance the color of meat products and these have certain potential to replace nitrite in meat products.
Collapse
Affiliation(s)
- Qianhui Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhiqiang Feng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Wang J, Wang X, Yang W, Wang L, Huang XH, Qin L. Comprehensive insights into the mechanism of flavor formation driven via inoculation with mixed starter cultures in dry-fermented tilapia sausages: Integration of macrogenomics, volatilomics, and lipidomics. Food Chem 2024; 455:139950. [PMID: 38917654 DOI: 10.1016/j.foodchem.2024.139950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
To investigate the mechanisms of flavor formation in dry-fermented tilapia sausages, the volatiles, bacterial community, and lipid composition during fermentation were analyzed using gas chromatography-ion mobility spectrometry, 16S high throughput sequencing, and ultra-performance liquid chromatography-mass spectrometer. Pediococcus pentosaceus, Staphylococcus xylosus, and Staphylococcus carnosus became dominant bacteria during the fermentation. A total of 66 volatiles and 293 lipids (48 differential lipids) were identified. PC and PE content decreased. Aldehyde and 1-octen-3-ol content decreased. Most esters and ketones content increased during fermentation. Six metabolic pathways associated with differential lipids were identified by enrichment analysis. Glycerophospholipid metabolism was the main metabolic pathway. Correlation analysis revealed that PC and PE were precursors for volatiles, including PC 16:0/18:2 and PE 18:0/22:6. The dominant bacteria facilitate the hydrolysis of PC and PE, leading to the formation of esters and ketones. This study provides a theoretical basis for the targeted regulation of fermented sausage flavors.
Collapse
Affiliation(s)
- Ji Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xusong Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Hainan Xiangtai Fishery Co., Ltd, Chengmai, Hainan 571924, China
| | - Liang Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Tong X, Han X, Wu S, Pang J, Fu J, Sun J, Qiao Y, Zhang Y. Characteristics of changes in volatile organic compounds and bacterial communities in physically preserved pigeon breast meat. Food Res Int 2024; 191:114651. [PMID: 39059903 DOI: 10.1016/j.foodres.2024.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
To understand the relationship between changes in aroma and bacteria in pigeon breast meat (PBM) during preservation, bacterial communities and volatile compounds in PBM were analyzed using high-throughput sequencing and gas chromatography-ion mobility spectrometry. Analyses of total viable bacteria counts revealed that modified atmospheric packaging (MAP) and electron beam irradiation (EBI) could be used to extend the shelf-life of PBM to 10 d and 15 d, respectively. Furthermore, Lactococcus spp. and Psychrobacter spp. were the dominant bacterial genera of the MAP and EBI groups, respectively. The results of the study revealed 91 volatile organic compounds, one of which, butanal, was the most intense volatile organic compound while being an important source of aroma differences between the physical preservation techniques. Alpha-terpinolene, acetoin-M, gamma-butyrolactone, 1-hexanol-M, and 2,6-dimethyl-4-heptanone may be markers of PBM spoilage. During preservation, the MA group (treatment with 50 % CO2 + 50 % N2) demonstrated greater stabilization of PBM aroma. A Spearman correlation analysis showed that Lactococcus spp., Psychrobacter spp., and Pseudomonas spp. were the dominant bacterial genera of PBM during preservation and were closely related to an increase in the intensity of anisole, 2-methyl-3-furanthiol, and 5-methyl-2-furanmethanol, respectively. Lactococcus spp. and Psychrobacter spp. play crucial roles in the sensory degradation of PBM. In this study, we analyzed the changes in bacterial genera and volatile organic compounds of PBM under different physical preservation techniques to identify a suitable method for preserving PBM and evaluating its freshness.
Collapse
Affiliation(s)
- Xiaoyang Tong
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xueqin Han
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Songheng Wu
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinxin Pang
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Juan Fu
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jianguang Sun
- Shanghai Shenyu Pigeon Breeding Professional Cooperative, Shanghai 200000, China
| | - Yongjin Qiao
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yi Zhang
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
14
|
Ye J, Zhang X, Yuan S, Zhang Y, Cao J, Teng W, Wang Y. An Investigation of Volatile Flavor Compounds and Lipolysis-Oxidation in Coppa as Affected by the Inoculation of Coagulase-Negative Staphylococcus during the Air-Drying Stage. Foods 2024; 13:2723. [PMID: 39272489 PMCID: PMC11395480 DOI: 10.3390/foods13172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to explore the effects of coagulase-negative Staphylococcus inoculation on flavor generation and lipolysis-oxidation in Coppa. Acid lipase, neutral lipase, phospholipase, and lipoxygenase (LOX) activities, as well as free fatty acids, volatile compounds, and sensory evaluation, were determined during the fermentation and air-drying processes of Coppa over 40 days. Staphylococcus carnosus and Staphylococcus xylosus or a combination of both strains were selected for this study, and natural fermentation was treated as a control. The results showed that Staphylococcus inoculation significantly enhanced lipase and LOX activities, and mixed strains had a superior effect. Palmitic acid, stearic acid, linoleic acid, and oleic acid were identified as the predominant free fatty acids in Coppa, with the mixed fermentation group exhibiting the highest contents. Acids, aldehydes, alcohols, ketones, esters, and phenols were found for the volatile compounds in Coppa. These findings thus suggested a positive role of Staphylococcus inoculation in activating lipolysis-oxidation and contributing to the flavor formation of Coppa during the air-drying stage.
Collapse
Affiliation(s)
- Jialing Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xuying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuge Yuan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Wang H, Sui Y, Liu J, Liu S, Kong B, Qin L, Chen Q. Targeted inhibition of biogenic amine-producing strains by spice extracts and control of biogenic amine accumulation in reduced-salt dry sausages. Food Microbiol 2024; 121:104527. [PMID: 38637089 DOI: 10.1016/j.fm.2024.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to screen spice extracts that can target the inhibition of biogenic amine (BA)-producing bacteria and reduce the BA accumulation in reduced-salt dry sausages. A total of 59 bacterial strains were isolated from reduced-salt dry sausages; among them, three isolates, namely, Staphylococcus epidermidis S1, S. saprophyticus S2, and S. edaphicus S3, had the strongest ability to produce BA. Eight spice extracts, i.e. Angelica dahurica, cinnamon, ginger, clove, fennel, Amomum, nutmeg, and orange peel, were extracted. The inhibition zone diameter and minimum inhibitory concentration indicated that A. dahurica, Amomum, and clove elicited the strongest inhibitory effect on BA-producing strains. Growth kinetics showed the strongest inhibitory effect of clove extracts, followed by Amomum and A. dahurica. In the medium system, clove extract was the most effective in controlling the total BA content by inhibiting of BA-producing strains S. epidermidis S1, S. saprophyticus S2, and S. edaphicus S3; their contents were reduced by 23.74%, 31.05% and 21.37%, respectively. In the dry sausage system, the control of BA accumulation by clove was quite prominent, and the total BA content was reduced from 373.70 mg/kg to 259.05 mg/kg on day 12.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Siting Liu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
16
|
Ji L, Zhou Y, Nie Q, Luo Y, Yang R, Kang J, Zhao Y, Zeng M, Jia Y, Dong S, Gan L, Zhang J. The Potential Correlation between Bacterial Diversity and the Characteristic Volatile Flavor Compounds of Sichuan Sauce-Flavored Sausage. Foods 2024; 13:2350. [PMID: 39123542 PMCID: PMC11312067 DOI: 10.3390/foods13152350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The distinctive taste of Sichuan sauce-flavored sausage comes from an intricate microbial metabolism. The correlation between microbial composition and distinct flavor components has not been researched. The study used headspace solid-phase microextraction action with gas chromatography mass spectrometry to find flavor components and high-throughput sequencing of 16S rRNA to look at the diversity and succession of microbial communities. The correlation network model forecasted the connection between essential bacteria and the development of flavors. The study revealed that the primary flavor compounds in Sichuan sauce-flavored sausages were alcohols, aldehydes, and esters. The closely related microbes were Leuconostoc, Pseudomonas, Psychrobacter, Flavobacterium, and Algoriella. The microbes aided in the production of various flavor compounds, such as 1-octen-3-ol, benzeneacetaldehyde, hexanal, (R,R)-2,3-butanediol, and ethyl caprylate. This work has enhanced our comprehension of the diverse functions that bacteria serve in flavor development during the fermentation of Sichuan sauce-flavored sausage.
Collapse
Affiliation(s)
- Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Yanan Zhou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Qing Nie
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Yi Luo
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Rui Yang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Jun Kang
- Key Laboratory of Natural Products and Functional Food Development Research, Sichuan Vocational College of Chemical Industry, Chengdu 646000, China;
| | - Yinfeng Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| | - Mengzhao Zeng
- Sichuan Stega Biotechnology Co., Ltd., Chengdu 610199, China;
| | - Yinhua Jia
- Sichuan Fansaoguang Food Group Co., Ltd., Chengdu 611732, China; (Y.J.); (S.D.)
| | - Shirong Dong
- Sichuan Fansaoguang Food Group Co., Ltd., Chengdu 611732, China; (Y.J.); (S.D.)
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (L.J.); (Y.Z.); (Q.N.); (Y.L.); (R.Y.); (Y.Z.)
| |
Collapse
|
17
|
Wang H, Yin X, Zhang L, Wang X, Zhang J, Wen R, Cao J. Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham. Foods 2024; 13:776. [PMID: 38472889 PMCID: PMC10930425 DOI: 10.3390/foods13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
To expound on the correlation between the microorganism communities and the formation of off-odour in Xuanwei ham, the microorganism communities and volatile compounds were investigated in the biceps femoris (BF) and semimembranosus (SM) of Xuanwei ham with different quality grades (normal ham and spoiled ham). The single molecule real-time sequencing showed that differential bacteria and fungi were more varied in normal hams than in spoiled hams. Headspace solid-phase microextraction-gas chromatography (HS-SPME-GC-MS) results indicated that aldehydes and alcohols were significantly higher in spoiled hams than those in normal hams (p < 0.05). The off-odour of spoiled hams was dominated by ichthyic, malodourous, sweaty, putrid, sour, and unpleasant odours produced by compounds such as trimethylamine (SM: 13.05 μg/kg), hexanal (BF: 206.46 μg/kg), octanal (BF: 59.52 μg/kg), methanethiol (SM: 12.85 μg/kg), and valeric acid (BF: 15.08 μg/kg), which are positively correlated with Bacillus cereus, Bacillus subtilis, Bacillus licheniformis, Pseudomonas sp., Aspergillus ruber, and Moraxella osloensis. Furthermore, the physicochemical property and quality characteristics results showed that high moisture (BF: 56.32 g/100 g), pH (BF: 6.63), thiobarbituric acid reactive substances (TBARS) (SM: 1.98 MDA/kg), and low NaCl content (SM: 6.31%) were also responsible for the spoilage of hams with off-odour. This study provided a deep insight into the off-odour of Xuanwei ham from the perspective of microorganism communities and a theoretical basis for improving the flavour and overall quality of Xuanwei hams.
Collapse
Affiliation(s)
- Haoyi Wang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Xiaoyu Yin
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Lu Zhang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Xuejiao Wang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Jiliang Zhang
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| | - Rongxin Wen
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Jianxin Cao
- College of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (H.W.); (X.Y.); (L.Z.); (X.W.); (J.Z.)
| |
Collapse
|
18
|
Zheng SS, Wang CY, Hu YY, Yang L, Xu BC. Enhancement of fermented sausage quality driven by mixed starter cultures: Elucidating the perspective of flavor profile and microbial communities. Food Res Int 2024; 178:113951. [PMID: 38309873 DOI: 10.1016/j.foodres.2024.113951] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The metabolic activities of microorganisms play a crucial role in the quality development of fermented sausage. This study investigated the effect of inoculation with different combinations of starter cultures (Lactiplantibacillus plantarum YR07, Latilactobacillus sakei L.48, Staphylococcus xylosus S.14, and Mammaliicoccus sciuri S.18) on the quality of sausages. Inoculation with mixed starter cultures promoted protein degradation to generate amino acids and the conversion to volatile compounds, which enhanced the flavor development in fermented sausages. The bacterial community analyses demonstrated that the inoculation of mixed starter cultures could inhibit the growth of spoilage and pathogenic bacteria, thereby reducing the total content of biogenic amines. The correlation analysis between the core bacteria and characteristic volatile compounds revealed that fermented sausages inoculated with Lactobacillus and coagulase negative staphylococci exhibited significant positive correlations with the majority of key characteristic volatile compounds. In four treatments, inoculation with L. plantarum YR07 and M. sciuri S.18 greatly promoted the formation of characteristic volatile compounds (3-hydroxy-2-butanone, hexanal, and 1- octen-3ol). Therefore, the combined inoculation of L. plantarum YR07 and M. sciuri S.18 is promising to enhance fermented sausage's flavor profile and safety.
Collapse
Affiliation(s)
- Sha-Sha Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Chun-Yu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Ying-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
19
|
Yu H, Li P, Yin P, Cai J, Jin B, Zhang H, Lu S. Bacterial community succession and volatile compound changes in Xinjiang smoked horsemeat sausage during fermentation. Food Res Int 2023; 174:113656. [PMID: 37986490 DOI: 10.1016/j.foodres.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
This study examined the bacterial community dynamics and their relationship with volatile compounds in Xinjiang smoked horsemeat sausage during fermentation. We employed single-molecule real-time sequencing (SMRT) to identify the bacterial composition, while headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was utilized to detect volatile compounds in the sausage. The findings indicated that Staphylococcus xylosus, Lactococcus garvieae, Latilactobacillus sakei, Lactococcus lactis, and Weissella hellenica were the predominant species during the fermentation. Moreover, we identified 56 volatile substances in the smoked horsemeat sausages, including alcohols, esters, ketones, acids, aldehydes, terpenes, and phenols. Notably, the correlation analysis demonstrated positive associations between the major bacteria and the primary volatile compounds, with notable connections observed for Staphylococcus xylosus, Lactococcus garvieae and Weissella hellenica. These research findings provide a foundation for future endeavors aimed at enhancing the flavor quality of smoked horsemeat sausage.
Collapse
Affiliation(s)
- Honghong Yu
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Pingcan Li
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Pengcheng Yin
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Jixun Cai
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Boyu Jin
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Haopeng Zhang
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Shiling Lu
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| |
Collapse
|
20
|
Wu X, Pan D, Xia Q, Sun Y, Geng F, Cao J, Zhou C. The combination of high-throughput sequencing and LC-MS/MS reveals the mechanism of Staphylococcus inoculation on bacterial community succession and taste development during the processing of dry-cured bacon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7187-7198. [PMID: 37351843 DOI: 10.1002/jsfa.12806] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND To understand the mechanism of co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus (SX&SV) on taste quality of dry-cured bacon, physicochemical parameters, microbial community, metabolite compositions and taste attributes were investigated during the processing of dry-cured bacon with Staphylococcus inoculation. The potential correlation between core bacteria and metabolites was evaluated, and the metabolic pathway of key metabolites was further explored. RESULTS The values of pH, water activity and adhesiveness were significantly lower in SX&SV, and more than 2.56- and 2.15-fold higher values in richness and overall acceptance were found in SX&SV bacon than in CK bacon. The overwhelming advantage of Staphylococcus was confirmed in SX&SV by high-throughput sequencing. Sixty-six metabolites were identified by liquid chromatography-tandem mass spectrometry, and oligopeptides, amino acid derivatives and organic acids were the key components. Pearson correlation demonstrated that the accumulation of oligopeptides, amino acid derivatives and organic acids were positively correlated with high abundance of Staphylococcus. The pathways of purine metabolism, glutathione metabolism and glutamate metabolism were mainly involved in developing the taste quality of SX&SV. CONCLUSION The co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus enhanced the taste attributes of dry-cured bacon. The present study provides the theoretical reference with respect to regulating the taste quality of fermented meat products by starter cultures of Staphylococcus during manufacture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueyi Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| |
Collapse
|
21
|
Zhang D, Yang P, Liu K, Wu L, Li G, Zhang H, Ma X, Rong L, Li R. The effective of bacterial community dynamics driven by different starter cultures on the flavor development of Chinese fermented sausages. Food Chem X 2023; 19:100838. [PMID: 37780305 PMCID: PMC10534179 DOI: 10.1016/j.fochx.2023.100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to understand the community successions driven by different starters and their effects on the flavor development of Chinese fermented sausages. The results showed that the bacterial genus (67.6%) and pH (32.4%) were the key factors influencing the volatile profile. Inoculated the starters composed of Pediococcus and staphylococci maintained the stable community succession patterns dominated by staphylococci (samples T and S). Although the highly acidic environment (pH < 5.2) caused the community to exhibit a fluctuation in succession pattern, the inoculation of Latilactobacillus paracasei (sample Y) maintained microbial diversity and was conducive to the accumulation of aldehydes and esters. In sample P, inoculated the starter with Latilactobacillus and Staphylococcus also maintained microbial diversity, the moderately acidic environment (pH > 5.4) resulted in a stable succession pattern of the microbial community, and it was not conducive to the accumulation of aldehydes, alcohols and esters.
Collapse
Affiliation(s)
- Di Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Peng Yang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Kaihao Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Liu Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Huan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Xiaozhong Ma
- Jinzi Ham Co., Ltd., No. 1000, Jinfan Street, Industrial Park, Jinhua, Zhejiang 321016, China
| | - Liangyan Rong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| | - Ruren Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
| |
Collapse
|
22
|
Ma Y, Gao Y, Xu Y, Zhou H, Zhou K, Li C, Xu B. Microbiota dynamics and volatile metabolite generation during sausage fermentation. Food Chem 2023; 423:136297. [PMID: 37187009 DOI: 10.1016/j.foodchem.2023.136297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
Microorganism metabolic activity is critical for the formation of unique flavors in fermented meat products. To clarify the relationship between the formation of the special flavor of fermented meat and microorganisms, high-throughput sequencing and gas chromatography-ion mobility spectrometry were used to analyze microorganisms and volatile compounds in naturally fermented sausage. The findings revealed 91 volatile compounds and 4 key microorganisms, including Lactobacillus, Weissella, Leuconostoc, and Staphylococcus. The key microorganisms were positively correlated with the formation of 21 volatile compounds. The validation results showed that the contents of volatile compounds such as heptanal, octanal, 2-pentanone, and 1-octen-3-ol increased significantly after inoculation with Lb. sakei M2 and S. xylosus Y4. These two bacteria are the key microorganisms that produce the special flavor of fermented sausage. The present study can provide a theoretical basis for the directional development of fermented meat products, the preparation of special flavor enhancers, and expedited fermentation processes.
Collapse
Affiliation(s)
- Ying Ma
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yafei Gao
- Anhui Hefeng Food Co., Ltd., Bozhou, Anhui 236700, China
| | - Yujuan Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China.
| | - Kai Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
23
|
Rubak YT, Lalel HJD, Sanam MUE. Physicochemical, microbiological, and sensory characteristics of " Sui Wu'u" traditional pork products from Bajawa, West Flores, Indonesia. Vet World 2023; 16:1165-1175. [PMID: 37576773 PMCID: PMC10420695 DOI: 10.14202/vetworld.2023.1165-1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Sui Wu'u is a traditional meat preservation product from Bajawa, a region in East Nusa Tenggara. It is made by mixing pork with salt and corn flour, which is then stored in a bamboo container (tuku) for months. After 6 months of storage, this study examined the physicochemical, microbiological, and sensory properties of Sui Wu'u. Materials and Methods Sui Wu'u products were prepared using the traditional recipe from the Bajawa community. Fresh pork (pork belly and backfat), corn flour, and salt were purchased from local/traditional markets at proportions of 65%, 30%, and 5%, respectively. The physicochemical, amino acid, fatty acid profile, microbiological, and sensory properties of Sui Wu'u were evaluated after being stored for 6 months in a bamboo container (tuku). Results The results indicated that these Sui Wu'u were mainly characterized by high-fat levels, followed by protein. The pH value, salt content, moisture content, and water activity were 4.72%, 1.72%, 6.11%, and 0.62%, respectively. Minerals (K, P, Se, and Zn) and vitamin B6, as well as amino acids, such as leucine, phenylalanine, lysine (essential amino acids), glycine, proline, glutamic acid, and alanine (non-essential amino acids), are present in Sui Wu'u. The fatty acid profile was dominated by monounsaturated fatty acids (MUFA) (21.69%), saturated fatty acids (SFA) (17.78%), and polyunsaturated fatty acids (PUFA) (5.36%). Monounsaturated fatty acids, oleic acid (C18:1n9) was the most abundant fatty acid in Sui Wu'u, followed by palmitic acid SFA (C16:0); MUFA stearic acid (C18:0); and PUFA linoleic (C18:2n-6). The microbiological characteristics of Sui Wu'u showed no detectable microorganisms (<10 CFU/g) for Salmonella, total E. coli and total Staphylococcus, and average values of 4.4 × 105 CFU/g for total microbes, which were still below the maximum limit of microbial contamination according to the regulations of the Food and Drug Supervisory Agency of the Republic of Indonesia. The sensory assessment indicated that panelists highly preferred (rated as very like) Sui Wu'u for all sensory attributes. Conclusion The physicochemical, microbiological, and sensory characteristics of Sui Wu'u after 6 months of storage indicated that it still provides essential nutrients for the body and is quite safe for consumption. The stability of Sui Wu'u's shelf life can be attributed to the appropriate combination of pork, salt, corn flour, bamboo packaging (tuku), and storage temperature. The high-fat content in Sui Wu'u can be reduced by increasing the proportion of lean meat. Ensuring strict sanitation during the manufacturing process, using high-quality pork, salt, corn flour, and proper packaging with bamboo can further improve the safety of Sui Wu'u for consumption.
Collapse
Affiliation(s)
- Yuliana Tandi Rubak
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Herianus J. D. Lalel
- Department of Agrotechnology, Faculty of Agriculture, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| | - Maxs Urias Ebenhaizar Sanam
- Department of Animal Diseases Sciences and Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Nusa Cendana, Kupang, East Nusa Tenggara 85228, Indonesia
| |
Collapse
|
24
|
Wang W, Zhang F, Dai X, Liu Y, Mu J, Wang J, Ma Q, Sun J. Changes in vinegar quality and microbial dynamics during fermentation using a self-designed drum-type bioreactor. Front Nutr 2023; 10:1126562. [PMID: 36908901 PMCID: PMC9994180 DOI: 10.3389/fnut.2023.1126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The bioreactor based on solid-state fermentation technology has been developed for vinegar production, standardization of fermentation process and stabilization of vinegar quality. The microbial community diversity, and volatile compounds of six cultivars of vinegar samples fermented in a self-designed solid-state fermentation bioreactors were investigated using Illumina MiSeq platform and gas chromatography mass spectrometry (GC-MS) technology. The correlations between the richness and diversity of microbiota and volatile profiles, organic acids, as well as physicochemical indicators were explored by R software with the coplot package. The findings indicated that Acetobacter, norank-c-Cyanobacteria, and Weissella played key roles during fermentation process. Norank-f-Actinopolyporaceae, norank-c-Cyanobacteria, Pediococcus, and Microbacterium had significant correlations with the physicochemical characteristics. The most common bacterial species were associated with a citric acid content, whereas the least number of bacterial species correlated with malic acid content. Findings could be helpful for the bioreactor optimization, and thus reaching the level of pilot scale and industrialization.
Collapse
Affiliation(s)
- Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xinpeng Dai
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.,Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding, China.,Sino-US and Sino-Japan Joint Centre of Food Science and Technology, Baoding, China
| |
Collapse
|
25
|
Zhou Y, Zhou Y, Wan J, Zhu Q, Liu L, Gu S, Li H. Effects of sorbitol-mediated curing on the physicochemical properties and bacterial community composition of loin ham during fermentation and ripening stages. Food Chem X 2022; 17:100543. [PMID: 36845517 PMCID: PMC9943751 DOI: 10.1016/j.fochx.2022.100543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, the impacts of loin ham with sorbitol-mediated curing on its physicochemical properties and bacterial community composition during fermentation and ripening were investigated. The salt content, pH, and water activity (aw) were lower in the sorbitol group than in the control group throughout the fermentation and ripening stages (P < 0.05). In addition, the L* values were higher in the sorbitol group (P < 0.05). Additionally, microbial diversity diminished in all groups as the fermentation and ripening process proceeded, with Lactobacillus turning into the dominant genus in the control group and Staphylococcus and Lactobacillus becoming dominant in the sorbitol group. Pearson's correlation analysis confirmed that the physicochemical properties have been significantly correlated with the bacterial community. In conclusion, sorbitol-mediated curing not only facilitates salt reduction while prolonging the storage period of loin ham, but also improves the distribution of bacterial community in loin ham and enhances its quality.
Collapse
Affiliation(s)
- Yeling Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Jing Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China,Corresponding author at: Department of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang 550025, Guizhou Province, China.
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Sha Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Hongying Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China,Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China,Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| |
Collapse
|
26
|
Hu Y, Tian Y, Zhu J, Wen R, Chen Q, Kong B. Technological characterization and flavor-producing potential of lactic acid bacteria isolated from traditional dry fermented sausages in northeast China. Food Microbiol 2022; 106:104059. [DOI: 10.1016/j.fm.2022.104059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
|
27
|
Dong C, Shi S, Pan N, Du X, Li H, Xia X. Inhibitory mechanism of tyramine-degrading strains on reducing tyramine accumulation in Harbin dry sausage during fermentation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Unraveling the difference in flavor characteristics of dry sausages inoculated with different autochthonous lactic acid bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Kaban G, Sallan S, Çinar Topçu K, Sayın Börekçi B, Kaya M. Assessment of technological attributes of autochthonous starter cultures in Turkish dry fermented sausage (sucuk). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Güzin Kaban
- Department of Food Engineering Faculty of Agriculture Atatürk University 25240 Erzurum Turkey
| | - Selen Sallan
- Department of Food Processing Bandırma Vocational School Bandırma Onyedi Eylul University 10200 Bandirma Balıkesir Turkey
| | - Kübra Çinar Topçu
- Department of Food Processing Aydıntepe Vocational School Bayburt University 69500 Bayburt Turkey
| | - Bilge Sayın Börekçi
- Department of Food Engineering Faculty of Engineering Ardahan University 75000 Ardahan Turkey
| | - Mükerrem Kaya
- Department of Food Engineering Faculty of Agriculture Atatürk University 25240 Erzurum Turkey
| |
Collapse
|
30
|
Zhou C, Xia Q, Du L, He J, Sun Y, Dang Y, Geng F, Pan D, Cao J, Zhou G. Recent developments in off-odor formation mechanism and the potential regulation by starter cultures in dry-cured ham. Crit Rev Food Sci Nutr 2022; 63:8781-8795. [PMID: 35373656 DOI: 10.1080/10408398.2022.2057418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Foul-smelling odors are main quality defects of dry-cured ham, which are connected with the excessive degradation of the structural proteins and excessive oxidation of lipids caused by the abnormal growth of spoilage microorganisms, threatening the development of dry-cured ham industry. Characterizing the key microorganisms and metabolites resulted in the spoilage of dry-cured ham, and discussing the relationship between spoilage microorganisms and metabolites are the key aspects to deeply understand the formation mechanism of off-odor in dry-cured ham. Until now, there is no detailed discussion or critical review on the role of spoilage microorganisms in developing the off-odor of dry-cured ham, and the regulation of off-odor and spoilage microorganisms by starter cultures has been not discussed. This review shows the recent achievement in the off-odor formation mechanism of dry-cured ham, and outlines the potential regulation of off-odor defects in dry-cured ham by starter cultures. Results from current research show that the abnormal growth of Lactic acid bacteria, Micrococcaceae, Enterobacteriaceae, Yeasts and Molds plays a key role in developing the off-odor defects of dry-cured ham, while the key spoilage microorganisms of different type hams are discrepant. High profile of aldehydes, acids, sulfur compounds and biogenic amines are responsible for off-odor development in spoiled dry-cured ham. Several starter cultures derived from these species of Staphylococcus, Penicillium, Debaryomyces, Pediococcus and Lactobacillus show a great potential to prevent microbiological hazards and improve flavor quality of dry-cured ham, whereas, the ecology, function and compatibility of these starter cultures with the processing parameters of dry-cured ham need to be further evaluated in the future.
Collapse
Affiliation(s)
- Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing, P.R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
31
|
Flavour Compensation Role of Yeast Strains in Reduced-Salt Dry Sausages: Taste and Odour Profiles. Foods 2022; 11:foods11050650. [PMID: 35267284 PMCID: PMC8909549 DOI: 10.3390/foods11050650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of different yeast strains including Pichia kudriavzevii, Torulaspora delbrueckii, and Debaryomyces hansenii on the taste and odour profiles of reduced-salt dry sausages were explored. Inoculation of P. kudriavzevii and D. hansenii compensated for the lack of saltiness and umami tastes of reduced-salt sausages. Furthermore, inoculation of P. kudriavzevii and T. delbrueckii resulted in an odour profile in the reduced-salt dry sausages that was similar to traditional dry sausages. According to the volatile analysis, the contents of certain alcohols, acids, esters and terpenes were higher in the inoculated sausages. Finally, the sensory evaluation indicated that the inoculation of P. kudriavzevii and D. hansenii contributed positively to the aroma and saltiness of reduced-salt dry sausages. In conclusion, P. kudriavzevii and D. hansenii can be employed as effective starter cultures to compensate for the flavour deficiencies of reduced-salt dry sausages.
Collapse
|
32
|
Effects of Modified Atmosphere Packaging with Various CO2 Concentrations on the Bacterial Community and Shelf-Life of Smoked Chicken Legs. Foods 2022; 11:foods11040559. [PMID: 35206036 PMCID: PMC8870794 DOI: 10.3390/foods11040559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
The effects of modified atmosphere packaging (MAP) with various CO2 concentrations on the bacterial community and shelf-life of smoked chicken legs during 25 d of storage at 4 °C were evaluated herein. Four treatments were stored in pallets (PAL) and MAP under 20% (M20), 60% (M60), and 100% (M100) CO2, respectively. The results indicated that the MAP treatments provided the legs with higher redness and hardness and lower yellowness, luminance, and lipid oxidation, compared with the PAL treatment. In addition, the MAP treatments effectively inhibited the growth of viable bacteria, delayed bacterial spoilage, and extended the shelf-life of the samples. The M60 and M100 treatments had a better inhibition effect on bacteria. In terms of bacterial community, Carnobacterium, Pseudomonas, Brochothrix, and Lactococcus were the most predominant genera in the 25 d-stored MAP samples, with Carnobacterium maltaromaticum, Pseudomonas fragi, Shewanella baltica, and Lactococcus piscium being the dominant species. However, while the inhibition effects of the M60 and M100 treatments on the bacterial community at Day 25 were similar, the outer package of the M100 treatment collapsed. Overall, the M60 treatment may be a promising approach to improving the quality and extending the shelf-life of smoked chicken legs.
Collapse
|
33
|
Tian S, Zeng W, Zhou J, Du G. Correlation between the microbial community and ethyl carbamate generated during Huzhou rice wine fermentation. Food Res Int 2022; 154:111001. [DOI: 10.1016/j.foodres.2022.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
|
34
|
Hu Y, Li Y, Li XA, Zhang H, Chen Q, Kong B. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Technological properties and flavour formation potential of yeast strains isolated from traditional dry fermented sausages in Northeast China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Tian S, Zeng W, Fang F, Zhou J, Du G. The microbiome of Chinese rice wine (Huangjiu). Curr Res Food Sci 2022; 5:325-335. [PMID: 35198991 PMCID: PMC8844729 DOI: 10.1016/j.crfs.2022.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/30/2022] Open
|
37
|
Metagenomic Analysis of Bacterial Diversity in Traditional Fermented Foods Reveals Food-Specific Dominance of Specific Bacterial Taxa. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional fermented foods have been recognized by various communities to be good for health since ancient times. There is a provincial legacy of traditional fermented foods among the ethnic population of North-East India. Fermented bamboo shoots (local name: Tuaither), soybeans (Bekang), and pork fat (Sa-um) are famous in the Mizoram state and represent a primary portion of the daily diet. These foods are prepared using methods based on cultural traditions inherited from previous generations, and prepared using a relatively uncontrolled fermentation process. Analysis of the bacterial diversity in these foods can provide important information regarding the flavor and texture of the final products of fermentation. Unfortunately, studies on the microbial composition and health benefits of such traditional fermented foods have rarely been documented. Therefore, the present study aims to highlight this bacterial diversity, along with the proximate composition of different traditional fermented foods (Tuaither, Bekang and Sa-um) primarily consumed in Mizoram state, India. Samples were collected on three different days of fermentation (3rd, 5th and 7th day), and bacterial diversity analysis was performed using the V3-V4 variable region of 16S rRNA gene with Illumina sequencing. Results revealed differences in the bacterial composition of dominant group members among all of the three food types. Firmicutes (82.72–94.00%), followed by Proteobacteria (4.67–15.01%), were found to dominate to varying degrees in all three of the fermented foods. However, at genus level high variation was observed in bacterial composition among these three different types of fermented foods. Lactobacillus (91.64–77.16%), Staphylococcus (52.00–17.90%), and Clostridium (72.48–55.40%) exhibited the highest relative abundances in the Tuaither, Bekang and Sa-um foods, respectively, in descending order from the 3rd to 7th day of fermentation. A few of the bacterial genera such as Lactobacilli were positively correlated with fermented bamboo shoot samples, and Staphylococcus was positively correlated with protein, carbohydrate and crude fiber content in soybean samples. In general, Tuaither, Bekang and Sa-um exhibited distinct differences in bacterial composition. This variation may be due to differences in the raw materials and/or methods used in the preparation of the different fermented food products. This is the first study to describe the bacterial composition of these traditional fermented foods using high-throughput sequencing techniques, and could help to drive research attention to comprehensive studies on improving understanding of the role of microbial communities in the preparation of traditional foods and their health benefits.
Collapse
|
38
|
Zhang L, Chen Q, Liu Q, Xia X, Wang Y, Kong B. Effect of different types of smoking materials on the flavor, heterocyclic aromatic amines, and sensory property of smoked chicken drumsticks. Food Chem 2021; 367:130680. [PMID: 34348198 DOI: 10.1016/j.foodchem.2021.130680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
This study investigated the effect of different types of smoking materials on the flavor, heterocyclic aromatic amine (HAA) content, and sensory attributes of smoked chicken drumsticks. All smoked samples showed lower pH and L*-value and higher a*-value and b*-value than the control sample (P < 0.05), but no significant differences in water content and water activity (P > 0.05). The samples smoked with sucrose combined with pear-tree woodchips (SP) or green tea leaves (ST) had higher overall acceptability than other samples (P < 0.05). Smoking increased the total HAA content, and the ST sample exhibited the highest total HAA content (P < 0.05). A total of 54 volatile compounds was identified. Overall, SP and ST are suitable for smoked chicken considering the sensory properties, while S and SA are proper for smoked chicken considering the minimization of HAAs, which may provide a theory basis for the production of smoked chicken.
Collapse
Affiliation(s)
- Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yan Wang
- Shimadzu Co. Ltd., Shenyang 110016, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
39
|
Improving the taste profile of reduced-salt dry sausage by inoculating different lactic acid bacteria. Food Res Int 2021; 145:110391. [PMID: 34112394 DOI: 10.1016/j.foodres.2021.110391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to investigate the effects of lactic acid bacteria (LAB) including Lactobacillus curvatus, Lactobacillus sakei, Weissella hellenica, and Lactobacillus plantarum on the taste profiles of reduced-salt dry sausage. The results showed that the inoculation of LAB increased the moisture content and water activity and decreased the pH values of the sausages. Higher contents of total free amino acids (FAAs) were observed in the inoculated sausages (P < 0.05), especially for the sausages inoculated with L. curvatus, W. hellenica, and L. plantarum. The sausage inoculated with W. hellenica also had higher contents of organic acids than the other sausages (P < 0.05). In addition, partial least squares regression analysis demonstrated that the taste properties characterized by electronic tongue were consistent with the sensory evaluation results, and FAAs and organic acids contributed to the taste properties of the reduced-salt dry sausage. These results highlight the potential of W. hellenica and L. plantarum for the production of reduced-salt dry sausage with improved taste profiles.
Collapse
|
40
|
Portable Electronic Nose for Analyzing the Smell of Nasal Secretions in Calves: Toward Noninvasive Diagnosis of Infectious Bronchopneumonia. Vet Sci 2021; 8:vetsci8050074. [PMID: 33925674 PMCID: PMC8145462 DOI: 10.3390/vetsci8050074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
The paper demonstrates a new approach to identify healthy calves (“healthy”) and naturally occurring infectious bronchopneumonia (“sick”) calves by analysis of the gaseous phase over nasal secretions using 16 piezoelectric sensors in two portable devices. Samples of nasal secretions were obtained from 50 red-motley Holstein calves aged 14–42 days. Calves were subjected to rectal temperature measurements, clinical score according to the Wisconsin respiratory scoring chart, thoracic auscultation, and radiography (Carestream DR, New York, USA). Of the 50 calves, we included samples from 40 (20 “healthy” and 20 “sick”) in the training sample. The remaining ten calves (five “healthy” and five “sick”) were included in the test sample. It was possible to divide calves into “healthy” and “sick” groups according to the output data of the sensor arrays (maximum sensor signals and calculated parameters Ai/j) using the principal component linear discriminant analysis (PCA–LDA) with an accuracy of 100%. The adequacy of the PCA–LDA model was verified on a test sample. It was found that data of sensors with films of carbon nanotubes, zirconium nitrate, hydroxyapatite, methyl orange, bromocresol green, and Triton X-100 had the most significance for dividing samples into groups. The differences in the composition of the gaseous phase over the samples of nasal secretions for such a classification could be explained by the appearance or change in the concentrations of ketones, alcohols, organic carboxylic acids, aldehydes, amines, including cyclic amines or those with a branched hydrocarbon chain.
Collapse
|