1
|
Lin Y, Wang Y, Li Y. Exploring alternative solvents to n-hexane for green extraction of lipid from camellia oil cakes. Food Chem X 2025; 27:102443. [PMID: 40248316 PMCID: PMC12005931 DOI: 10.1016/j.fochx.2025.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Camellia oleifera Abel. is an important woody oilseed tree to help increase the self-sufficiency rate. In this study, lipid extraction focuses more on the solvent extraction of Camellia seed oil (CO) cakes rather than conventional cold pressing, where the performance of candidate alternative green solvents selected from hurdle technology was first evaluated. Compared to n-hexane (89.50 ± 0.00 %) and subcritical n-butane (83.75 ± 0.43 %), 2-methyloxolane (2-MeOx) performed the best with the comprehensive consideration of extraction ratio (94.79 ± 0.00 %), lipid composition and environmental impact (0.38 ± 0.07 kg of CO2 emission). Intriguingly, 2-MeOx exhibited the highest diffusion rate at both 25 °C and 55 °C in the extraction kinetic study, which could also extract the highest total phenolic contents (351.6 ± 0.02 mg GAE/kg dw) corresponding to its best oxidative stability. Besides, Hansen solubility modeling could help better understand the dissolving mechanism. 2-MeOx was demonstrated as the optimal alternative bio-based solvent to n-hexane with comparable extractability and selectivity in the CO extraction.
Collapse
Affiliation(s)
- Yingyi Lin
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou 510632, China
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou 510632, China
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou 510632, China
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Abbas M, Shabbir MA, Haq SMAU, Wahab HA, Hassan SA, Adeeba F, Ali A, Asif M, Nasir A, Mousavi Khaneghah A, Aadil RM. Harnessing the potential of bitter gourd seeds for food and nutrition- A comprehensive review. APPLIED FOOD RESEARCH 2024; 4:100508. [DOI: 10.1016/j.afres.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Melia S, Juliyarsi I, Kurnia YF, Aritonang SN, Rusdimansyah R, Sukma A, Setiawan RD, Pratama YE, Supandil D. Profile of stingless bee honey and microbiota produced in West Sumatra, Indonesia, by several species ( Apidae, Meliponinae). Vet World 2024; 17:785-795. [PMID: 38798299 PMCID: PMC11111726 DOI: 10.14202/vetworld.2024.785-795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Stingless bees are generally found in tropical countries, including Indonesia. In West Sumatra, stingless bees are known as Galo-galo, consist of several species with different characteristics; however, the properties of honey produced by stingless bees have not yet been explored. This study aimed to determine the physicochemical, antioxidant, and antimicrobial activities as well as the microbiota profile of stingless bee honey from the bee species Heterotrigona itama, Geniotrigona thoracica, Tetrigona melanoleuca, and Tetrigona binghami that are intensively developed in West Sumatra, Indonesia. Materials and Methods Honey produced by the stingless bee species H. itama, G. thoracica, T. melanoleuca, and T. binghami originating in West Sumatra was examined in the present study. The physicochemical properties (Association of Official Analytical Chemists), antioxidant activity (2,2-diphenyl-1-picrylhydrazyl technique), total phenols (Folin-Ciocalteu method), antimicrobial activity (Agar-Well diffusion test), total lactic acid bacteria, and microbiota diversity were measured in stingless bee honey samples. Results Stingless bee species significantly affected the physicochemical properties, antioxidant activity, total phenolic content, antimicrobial activity, and total lactic acid bacteria (p = 0.05), except for the crude fiber content. The carbohydrate profiles of honey produced by H. itama and T. binghami were dominated by monosaccharides, whereas those of honey from T. melanoleuca and G. thoracica were dominated by disaccharides. In terms of antioxidant activity (half maximal inhibitory concentration [IC50] value), there were no significant differences (p > 0.05) between honey from H. itama, T. melanoleuca, and T. binghami, but there were significant differences (p > 0.05) between honey from G. thoracica. The honey of G. thoracica and T. melanoleuca had the highest total phenolic content (65.65 ± 14.00 and 69.78 ± 8.06, respectively). In addition, honey from the four stingless bee species showed antimicrobial activity against the pathogenic bacteria Escherichia coli, Salmonella, Staphylococcus aureus, and Listeria monocytogenes. From the principal co-ordinate analysis (PCoA) results, it can be concluded that the microbiota profiles of the four stingless bee honey samples differed. Conclusion The results showed that honey from H. itama, G. thoracica, T. melanoleuca, and T. binghami has different physicochemical characteristics, antioxidant activity, antimicrobial activity, and microbiota diversity. By knowing the content of this stingless bee honey, the results of this study can be used as information that this stingless bee honey has the potential as a functional food that is beneficial for health.
Collapse
Affiliation(s)
- Sri Melia
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Indri Juliyarsi
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Yulianti Fitri Kurnia
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Salam N. Aritonang
- Department of Animal Production, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Rusdimansyah Rusdimansyah
- Department of Animal Production, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Ade Sukma
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Rizki Dwi Setiawan
- Department of Animal Products Technology, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Yudha Endra Pratama
- Student of Doctoral Program, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| | - Doni Supandil
- Student of Magister Program, Faculty of Animal Science, Universitas Andalas, Padang, 25163, Indonesia
| |
Collapse
|
4
|
Basharat Z, Murtaza Z, Siddiqa A, Alnasser SM, Meshal A. Therapeutic target mapping from the genome of Kingella negevensis and biophysical inhibition assessment through PNP synthase binding with traditional medicinal compounds. Mol Divers 2024; 28:581-594. [PMID: 36645537 PMCID: PMC9842218 DOI: 10.1007/s11030-023-10604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Kingella negevensis belongs to the Neisseriaceae family. It is implied that it has significant virulence potential due to RTX toxin production, which can cause hemolysis. It usually colonizes the orophayrynx of pediatric population, along with Kingella kingae but has also been isolated from vagina. Todate no report on its drug targets is present, therefore putative therapeutic targets were identified from its genomic sequence data. Traditional Chinese (n > 36,000) and Indian medicinal compounds (n > 2000) were then screened against its pyridoxine 5'-phosphate synthase, a vital therapeutic target. Prioritized TCM compounds included ZINC02525131, ZINC33833737 and ZINC85486932, and Cadiyenol, 9,11,13-Octadecatrienoic acid and 6-Gingerol from Indian medicinal library. Molecular dynamics simulation of top compounds revealed ZINC02525131 as having best stability for 100 ns, compared to Cadiyenol. ADMET profiling was then done, along with physiologically based pharmacokinetic simulation of these compounds in a population of 200 individuals, for 12 h to see fate of the ingested compound. Additionally, the impact of these compounds in a population with cirrhosis and renal impairment was also simulated. We imply in light of all the studied parameters of safety and bioavailability, etc., that 6-Gingerol from Zingiber officinalis rhizome must be proceeded further for in vitro and in vivo testing for inhibition of K. negevensis.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Zainab Murtaza
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aisha Siddiqa
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| |
Collapse
|
5
|
Lakshmipathy K, Thirunavookarasu N, Kalathil N, Chidanand DV, Rawson A, Sunil CK. Effect of different thermal and
non‐thermal
pre‐treatments on bioactive compounds of aqueous ginger extract obtained using vacuum‐assisted conductive drying system. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Kavitha Lakshmipathy
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Nirmal Thirunavookarasu
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Najma Kalathil
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Duggonahally Veeresh Chidanand
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Ashish Rawson
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | | |
Collapse
|
6
|
Suchintita Das R, Tiwari BK, Chemat F, Garcia-Vaquero M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. ULTRASONICS SONOCHEMISTRY 2022; 91:106234. [PMID: 36435088 PMCID: PMC9685360 DOI: 10.1016/j.ultsonch.2022.106234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.
Collapse
Affiliation(s)
- Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; TEAGASC, Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA, Université D'Avignon et des Pays de Vaucluse, Avignon Cedex, France
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Kumar S, Nirmal Thirunavookarasu S, Sunil C, Vignesh S, Venkatachalapathy N, Rawson A. Mass transfer kinetics and quality evaluation of tomato seed oil extracted using emerging technologies. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Aslam R, Alam MS, Kaur J, Panayampadan AS, Dar OI, Kothakota A, Pandiselvam R. Understanding the effects of ultrasound processng on texture and rheological properties of food. J Texture Stud 2022; 53:775-799. [PMID: 34747028 DOI: 10.1111/jtxs.12644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
The demand for the production of high quality and safe food products has been ever increasing. Consequently, the industry is looking for novel technologies in food processing operations that are cost-effective, rapid and have a better efficiency over traditional methods. Ultrasound is well-known technology to enhance the rate of heat and mass transfer providing a high end-product quality, at just a fraction of time and energy normally required for conventional methods. The irradiation of foods with ultrasound creates acoustic cavitation that has been used to cause desirable changes in the treated products. The technology is being successfully used in various unit operations such as sterilization, pasteurization, extraction, drying, emulsification, degassing, enhancing oxidation, thawing, freezing and crystallization, brining, pickling, foaming and rehydration, and so forth. However, the high pressure and temperature associated with the cavitation process is expected to induce some changes in the textural and rheological properties of foods which form an important aspect of product quality in terms of consumer acceptability. The present review is aimed to focus on the effects of ultrasound processing on the textural and rheological properties of food products and how these properties are influenced by the process variables.
Collapse
Affiliation(s)
- Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohammed Shafiq Alam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jaspreet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Afthab Saeed Panayampadan
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
9
|
Modupalli N, Krisshnan A, C K S, D V C, Natarajan V, Koidis A, Rawson A. Effect of novel combination processing technologies on extraction and quality of rice bran oil. Crit Rev Food Sci Nutr 2022; 64:1911-1933. [PMID: 36106441 DOI: 10.1080/10408398.2022.2119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice bran, a primary by-product from the rice processing industries, containing 10-15% oil, attracts significant attention from consumers due to its many health-promoting effects. The extraction methodology used is one of the most critical factors affecting the quality and yield of oil from rice bran. Using solvents is the current commercial process for rice bran oil extraction, which has its setbacks. It is challenging and expensive, and there is a risk of traces of solvent residue in the oil. Emerging combination extraction technologies offer zero to minimal solvent residues or chemical deformation while considering increasing environmental and energy footprint. Emerging combination processing technologies include new-age methods like supercritical fluid extraction, sub-critical fluid extraction, ultrasound-assisted enzymatic extraction, ohmic heating, and microwave-assisted extraction. These techniques have been reported to extract oil from rice bran, improving extraction efficiency and quality. These techniques demonstrate solid prospects for future applications. The present review discusses and compares these emerging technologies for oil extraction from rice bran commercially.
Collapse
Affiliation(s)
- Nikitha Modupalli
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Anitha Krisshnan
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Sunil C K
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Chidanand D V
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | | | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ashish Rawson
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| |
Collapse
|
10
|
Roy S, Sarkar T, Chakraborty R. Vegetable seeds: A new perspective in future food development. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| | - Tanmay Sarkar
- Malda Polytechnic West Bengal State Council of Technical Education, Govt. of West Bengal Malda India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| |
Collapse
|
11
|
Serna‐Jiménez JA, Torres‐Valenzuela LS, Mejía‐Arango G. Evaluation and comparison in caffeine extraction under green conditions: Solvent selection and ultrasound‐assisted process. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johanna Andrea Serna‐Jiménez
- Department of Inorganic Chemistry and Chemical Engineering University of Cordoba, Campus Universitario Rabanales Cordoba Spain
- Facultad de Ciencias Agrarias y Agroindustria Universidad Tecnológica de Pereira Pereira Colombia
| | | | | |
Collapse
|
12
|
Assessment of physicochemical, functional, thermal, and phytochemical characteristics of refined rice bran wax. Food Chem 2022; 396:133737. [PMID: 35870241 DOI: 10.1016/j.foodchem.2022.133737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The drastic increase in the utilization and conversion of biomass has been an effect of sustainability and circular economy in the food processing sector. Rice bran wax (RBW), an intermediate by-product of rice bran oil refining industries, has been one of the underutilized waste materials. The FT-IR analysis showed that RBW contains many similar compounds to that of beeswax (BW) and carnauba wax (CW). The DSC thermographs showed melting and crystallization temperatures of RBW as 78.55 and 73.43 °C, respectively, lesser than CW and more than BW. The peak profiling of XRD diffractographs has shown full-width at half-maximum of CW and RBW as 0.61 and 0.45, respectively, indicating distortion in crystal formation. The sequential extracts of RBW in hexane, dichloromethane, and ethylacetate have shown antimicrobial activity against E. coli and S. typhi. The research provides a baseline for extraction and separation of specialty compounds from RBW for by-product utilization.
Collapse
|
13
|
Optimization of ultrasound assisted aqueous enzymatic extraction of oil from Cinnamomum camphora seeds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Naik M, Natarajan V, Thangaraju S, Modupalli N, Rawson A. Assessment of storage stability and quality characteristics of thermo‐sonication assisted blended bitter gourd seed oil and sunflower oil. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohan Naik
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology ‐ IIFPT) Thanjavur India
- Department of Food Processing Technology School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed University) coimbatore India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology ‐ IIFPT) Thanjavur India
| | - Suka Thangaraju
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology ‐ IIFPT) Thanjavur India
| | - Nikitha Modupalli
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology ‐ IIFPT) Thanjavur India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology ‐ IIFPT) Thanjavur India
- Center of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur (an Institute of National Importance; formerly Indian Institute of Food Processing Technology ‐ IIFPT) Thanjavur India
| |
Collapse
|
15
|
Buvaneshwaran M, Radhakrishnan M, Natarajan V. Influence of ultrasound‐assisted extraction techniques on the valorization of agro‐based industrial organic waste – A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Malini Buvaneshwaran
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM‐T) Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal Processing National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM‐T) Thanjavur India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM‐T) Thanjavur India
| |
Collapse
|
16
|
Susilo B, Rohim A, Wahyu ML. Serial Extraction Technique of Rich Antibacterial Compounds in Sargassum cristaefolium Using Different Solvents and Testing their Activity. CURRENT BIOACTIVE COMPOUNDS 2022; 18. [DOI: 10.2174/1573407217666210910095732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 09/02/2023]
Abstract
Background:
Sargassum cristaefolium, as one of the brown seaweeds locally found in
Indonesia, is extracted using the serial technique employing different solvents.
Methods:
S. cristaefolium powder (50 mesh) was extracted with three different solvents, including
hexane, ethyl acetate, and methanol. S. cristaefolium powder residue was dried prior to serial re-extraction
using different solvents. Three serial extracts were obtained and named as 1-stage extract,
2-stage extract, and 3-stage extract. Besides, a single-step extract (i.e., extraction using only
methanol) was produced to be compared with three serial extracts in antibacterial activity tests (against
E. coli and S. aureus). The three serial extracts were detected for their antibacterial compounds
using GC-MS, LC-HRMS, and FT-IR.
Results:
The 3-stage extract exhibited the highest extraction yield. On S. aureus, the inhibition
zone in all extracts was not significantly different. On E.coli, the highest inhibition zone
(5.42±0.14 mm) was of the 3-stage extract; indeed, it was higher than both antibiotic and a single-
step extract. Antibacterial compounds, such as phenol, 9-Tricosene(Z)-, palmitic acid, and
oleamide, were present in all extracts. Other antibacterial compound types, both the 1-stage and 2-stage
extracts, contained 7 types, whilst the 3-stage extract contained the most types (11 types). Particularly,
hexyl cinnamic aldehyde, betaine and several cinnamic aldehyde groups were detected only
in the 3-stage extract comprising the dominant area. The carboxylic acid groups were detected in
all extracts to confirm the fatty acid structure.
Conclusions:
The serial extraction technique could produce the 3-stage extract which exhibited the
strongest antibacterial activity and contained the richest antibacterial compounds.
Collapse
Affiliation(s)
- Bambang Susilo
- Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Brawijaya, Malang-East Java,
Indonesia
| | - Abd. Rohim
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas
Brawijaya, Malang-East Java, Indonesia | Department of Agricultural Product Technology, Institut Teknologi dan
Sains Nahdlatul Ulama Pasuruan, Pasuruan-East Java, Indonesia
| | - Midia Lestari Wahyu
- Central Laboratory of Life Science, Universitas
Brawijaya, Malang-East Java, Indonesia
| |
Collapse
|
17
|
Naik M, Natarajan V, Modupalli N, Thangaraj S, Rawson A. Pulsed ultrasound assisted extraction of protein from defatted Bitter melon seeds (Momardica charantia L.) meal: Kinetics and quality measurements. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Lu X, Du H, Liu Y, Wang Y, Li D, Wang L. Effect of Ultrasound-Assisted Solvent Enzymatic Extraction on Fatty Acid Profiles, Physicochemical Properties, Bioactive Compounds, and Antioxidant Activity of Elaeagnus mollis Oil. Foods 2022; 11:359. [PMID: 35159511 PMCID: PMC8834463 DOI: 10.3390/foods11030359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/10/2022] Open
Abstract
Elaeagnus mollis oil extracted from the nuts of Elaeagnus mollis Diels can be used in food and pharmaceutical applications due to its excellent nutritional value. An ultrasound-assisted solvent enzymatic extraction (UASEE) method was used to extract oil from Elaeagnus mollis Diels with n-hexane solvent (1:11.6 g/mL) and 1.1% (w/w) mixed enzymes (neutral protease:hemicellulase:pectinase = 1:1:1, w/w/w). The physicochemical properties, fatty acid profile, bioactive compounds, antioxidant activity, morphology, and thermal stability of UASEE oil were investigated and compared with soxhlet extraction (SE) oil and cold pressing (CP) oil. The UASEE oil exhibited a higher content of unsaturated fatty acids (93.96 ± 0.28%), total tocopherols and tocotrienols (147.32 ± 2.19 mg/100 g), total phytosterols (261.78 ± 5.74 mg/100 g), squalene (96.75 ± 0.31 mg/100 g), total phenolic content (84.76 ± 2.37 mg GAE/kg), and antioxidant activity (12.52 ± 0.28 mg/mL) than SE and CP oil. The lower peroxide value and acid value in UASEE oil indicated its better quality and lower likelihood of rancidity. The oil obtained using UASEE had higher thermal stability as well, as indicated by thermogravimetric analysis. Scanning electron microscopy (SEM) showed that the UASEE process causes damage to cell walls, and the leakage of substances in the cells facilitates extraction in the following step. Thus, UASEE is a promising processing method for the extraction of Elaeagnus mollis oil.
Collapse
Affiliation(s)
- Xiaorui Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-Food Biomass, College of Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (X.L.); (Y.L.)
| | - Hongmiao Du
- Beijing Products Quality Supervision and Inspection Institute, 9 Shunxing Road, Beijing 101300, China;
| | - Yuanyuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-Food Biomass, College of Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (X.L.); (Y.L.)
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia;
| | - Dong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-Food Biomass, College of Engineering, China Agricultural University, P.O. Box 50, 17 Qinghua Donglu, Beijing 100083, China; (X.L.); (Y.L.)
| | - Lijun Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| |
Collapse
|
19
|
Editorial overview: "emerging processing technologies to improve the safety and quality of foods". Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment. Catalysts 2021. [DOI: 10.3390/catal11060748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, aqueous enzymatic extraction (AEE) was evaluated during the process of obtaining oil from mamey sapote seed (OMSS). Viscozyme L enzyme complex was used at pH 4 and 50 °C during the optimization of the extraction process by central composite design and response surface methodology. Optimal conditions were: 3.5% (w/w) of enzyme (regarding the seed weight), 5.5 h of incubation time, 235 rpm of agitation rate, and 1:3.5 of solid-to-liquid ratio. These conditions enabled us to obtain an OMSS yield of 66%. No statistically significant differences were found in the fatty acid profile and physicochemical properties, such as the acid and iodine values and the percentage of free fatty acids, between the oil obtained by AEE or by the conventional solvent extraction (SE). However, the oxidative stability of the oil obtained by AEE (11 h) was higher than that obtained by SE (9.33 h), therefore, AEE, in addition to being an environmentally friendly method, produces a superior quality oil in terms of oxidative stability. Finally, the high oil content in mamey sapote seed, and the high percentage of oleic acid (around 50% of the total fatty acid) found in this oil, make it a useful edible vegetable oil.
Collapse
|
21
|
Choudhary P, Rawson A. Impact of power ultrasound on the quality attributes of curd and its fermentation/gelation kinetics. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pintu Choudhary
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu India
| | - Ashish Rawson
- Centre of Excellence in Nonthermal Processing, Indian Institute of Food Processing Technology (IIFPT) Thanjavur Tamil Nadu India
- Department of Food Safety and Quality Testing Indian Institute of Food Processing Technology (Ministry of Food Processing Industries, Govt. of India) Thanjavur Tamil Nadu India
| |
Collapse
|