1
|
Toledo-Merma PR, Arias-Santé MF, Rincón-Cervera MÁ, Porras O, Bridi R, Rhein S, Sánchez-Contreras M, Hernandez-Pino P, Tobar N, Puente-Díaz L, de Camargo AC. Phenolic Fractions from Walnut Milk Residue: Antioxidant Activity and Cytotoxic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:3473. [PMID: 39771171 PMCID: PMC11728787 DOI: 10.3390/plants13243473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Walnut milk residues (WMR) were investigated for the first time through their phenolic characterization including soluble (free, esterified, and etherified) phenolics and those released from their insoluble-bound form (insoluble-bound phenolic hydrolysates, IBPHs) and their antioxidant properties. Free phenolics were recovered and alkaline or acid hydrolysis were used to recover the remaining phenolic fractions. Total phenolic compounds (TPCs) and their antioxidant activity were analyzed by Folin-Ciocalteu, FRAP, and ORAC methods, respectively. Soluble phenolics (free + esterified + etherified fractions) showed a higher TPC (275.3 mg GAE 100 g-1 dw) and antioxidant activity (FRAP: 138.13 µmol TE g-1 dw; ORAC: 45.41 µmol TE g-1 dw) with respect to the IBPH. There was a significant correlation between TPC and FRAP and ORAC values regardless of the fraction and tested sample. Phenolic acids and flavonoids were identified and quantified by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS). Gallic acid, mainly in the free form (3061.0 µg 100 g-1), was the most representative, followed by biochanin A, identified for the first time in a walnut product and mostly present in the fraction released from the esterified form (593.75 µg 100 g-1). No detrimental cytotoxic impact on Caco-2 cells was observed. Hence, WMR could be considered a potential source for the development of nutraceutical and/or antioxidant food additives.
Collapse
Affiliation(s)
- Pamela Ruth Toledo-Merma
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380494, Chile; (P.R.T.-M.); (L.P.-D.)
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - María Fernanda Arias-Santé
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Miguel Ángel Rincón-Cervera
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
- Department of Agronomy, Food Technology Division, University of Almería, 04120 Almería, Spain
| | - Omar Porras
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Raquel Bridi
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380000, Chile;
| | - Samantha Rhein
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Martina Sánchez-Contreras
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380000, Chile;
| | - Paulina Hernandez-Pino
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Nicolás Tobar
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| | - Luis Puente-Díaz
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Av. Doctor Carlos Lorca 964, Independencia, Santiago 8380494, Chile; (P.R.T.-M.); (L.P.-D.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Adriano Costa de Camargo
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, Chile; (M.F.A.-S.); (M.Á.R.-C.); (O.P.); (S.R.); (M.S.-C.); (P.H.-P.); (N.T.)
| |
Collapse
|
2
|
Zheng R, Liu HL, Cui NN, Zhou JZ, Sun X, Yin FW, Zhou DY. Cyanide content, nutrient composition, physicochemical properties and sensory quality of flaxseed oil bodies prepared from flaxseeds (Linum usitatissimum L.) treated with different heat treatment methods. Food Res Int 2024; 196:115116. [PMID: 39614580 DOI: 10.1016/j.foodres.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Flaxseeds (Linum usitatissimum L.) were pre-treated with different heat treatment methods including steaming (100 °C for 10 min, 20 min or 30 min), roasting (120 °C for 10 min, 20 min or 30 min) and microwave (560 W for 1 min, 2 min or 3 min). Flaxseed oil bodies were prepared from the flaxseeds with and without heat treatment, and the cyanide content, yield rate, nutritional composition, physico properties, rheological behavior, and sensory characteristic were evaluated. These three types of heat treatment methods could effectively reduce the content (1.87-13.98 mg/kg) of toxic cyanide in flaxseed oil bodies. In addition, compared with the flaxseed oil bodies in steaming and roasting treated groups, the flaxseed oil bodies in microwave treated group exhibited higher yield rate (36.37-39.71 %), lower level of lipid oxidation (peroxide value, 6.10-7.10 mmol/kg lipid; thiobarbituric acid reactive substances, 1.99-2.20 mg MDA/kg lipid), higher content of polyunsaturated fatty acids (PUFAs, 63.33-64.22 %), better viscoelasticity, and better appearance color. Therefore, microwave treatment at 560 W with less than 3 min is a suitable preheating method of flaxseeds, thus improving the quality of the obtaind oil bodies.
Collapse
Affiliation(s)
- Rui Zheng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hui-Lin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Nan-Nan Cui
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jun-Zhuo Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fa-Wen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Da-Yong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Mardani M, Badakné K, Szedljak I, Sörös C, Farmani J. Lipophilized rosmarinic acid: Impact of alkyl type and food matrix on antioxidant activity, and optimized enzymatic production. Food Chem 2024; 452:139518. [PMID: 38713983 DOI: 10.1016/j.foodchem.2024.139518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
In this study, the initial focus was on exploring the simultaneous impact of the oil-based food matrix and the polarity of rosmarinic acid derivatives on the antioxidant properties. Rosmarinic acid (RA) showed remarkable DPPH, FRAP, and ABTS radical scavenging activities, followed by methyl rosmarinate (MR) and ethyl rosmarinate (ER). In bulk oil, both conjugated dienes and p-AnV values reached a peak in the following order after 30 days: ER > MR > RA = BHT > control (no antioxidant). In the oil structured using monoacylglycerol, MR was more effective than ER and RA. For ethyl cellulose oleogel, emulsion, and gelled emulsion systems, RA was more effective. Additionally, after confirming the importance of the food matrix on the antioxidant activity of RA derivatives, the lipophilization of RA with ethanol was optimized as a model with Lipozyme 435 in hexane. A conversion yield of as high as 85.59% for ER was achieved, as quantified by HPLC-UV and confirmed by HPLC-DAD-ESI-qTOFMS.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Ildikó Szedljak
- Department of Cereal and Industrial Plant Processing, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Csilla Sörös
- Department of Applied Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 23, H-1118, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, PO Box: 578, Sari, Iran.
| |
Collapse
|
4
|
Domínguez-Perles R, García-Viguera C, Medina S. New anti-α-Glucosidase and Antioxidant Ingredients from Winery Byproducts: Contribution of Alkyl Gallates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14615-14625. [PMID: 37766493 PMCID: PMC10571075 DOI: 10.1021/acs.jafc.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Wine-making activity entails the production of solid and semisolid byproducts (grape stems and pomace and wine lees) that negatively impact the environment and industrial sustainability. Their features as sources of bioactive compounds support valorization procedures for functional and healthy ingredients. This work uncovers the quantitative alkyl gallates (gallic acid esters, C1-C12) profile of fresh (freeze-dried) materials and the effect of oven-drying on their stability by UHPLC-ESI-QqQ-MS/MS. The functionality was established concerning DPPH• scavenging and antihyperglycemic power. Wine lees exerted the highest high-free concentration of galloyl derivatives, ethyl gallate being the most abundant ester (3472.62 ng/g dw, on average). About the impact of the stabilization process, although as a general trend, the thermal treatment reduced the concentration, the reduction dimensions depended on the compound/matrix, remaining in valuable concentrations. Concerning radical scavenging, ze-dried stems and pomace displayed the highest capacity (24.11 and 18.46 mg TE/g dw, respectively), being correlated with propyl gallate (r2 = 0.690), butyl gallate (r2 = 0.686), and octyl gallate (r2 = 0.514). These two matrices exerted α-glucosidase inhibitory activity (1.58 and 1.46 units/L) equivalent to that of acarbose (a recognized α-glucosidase inhibitor). The newly described bioactive phytochemicals in winery residues (galloyl esters) and their correlation with functional traits allow for envisioning valorization alternatives.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| |
Collapse
|
5
|
Chandrasekar V, Arunachalam SS, Hari H, Shinkar A, Belur PD, Iyyaswami R. Probing the synergistic effects of rutin and rutin ester on the oxidative stability of sardine oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4198-4209. [PMID: 36193478 PMCID: PMC9525562 DOI: 10.1007/s13197-022-05473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Multicomponent antioxidant mixture is proved to be highly effective in imparting oxidative stability to the edible oil. It is believed that the high efficacy of those mixtures is due to the synergistic effect exhibited by two or more components. The current study aims to analyse the synergistic effect of a flavonoid and its corresponding ester in improving the oxidative stability of n-3 PUFA rich sardine oil. The oxidative stability of rutin, esterified rutin and their combinations at three different concentrations was studied in sardine oil stored at 37 ºC for 12 days in contact with air under darkness. The combination of rutin and rutin ester showed maximum reduction of 54.2% in oxidation at 100 mg/kg and 150 mg/kg. Perhaps this is the first report on the synergistic effect of a flavonoid and its lipophilized ester for improving the oxidative stability of n-3 PUFA rich oil.
Collapse
Affiliation(s)
| | - Selva Sudha Arunachalam
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore, Karnataka 575025 India
| | - Haritha Hari
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore, Karnataka 575025 India
| | - Apurva Shinkar
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore, Karnataka 575025 India
| | - Prasanna D. Belur
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore, Karnataka 575025 India
| | - Regupathi Iyyaswami
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Mangalore, Karnataka 575025 India
| |
Collapse
|
6
|
Development of Galloyl Antioxidant for Dispersed and Bulk Oils through Incorporation of Branched Phytol Chain. Molecules 2022; 27:molecules27217301. [DOI: 10.3390/molecules27217301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, a novel galloyl phytol antioxidant was developed by incorporating the branched phytol chain with gallic acid through mild Steglich esterification. The evaluation of the radical scavenging activity, lipid oxidation in a liposomal model, and glycerol trioleate revealed its superior antioxidant activities in both dispersed and bulk oils. Then, the antioxidant capacity enhancement of galloyl phytol was further explored using thermal gravimetry/differential thermal analysis (TG/DTA), transmission electron microscopy (TEM), and molecular modeling. The EC50 values of GP, GPa, and GE were 0.256, 0.262, and 0.263 mM, respectively, which exhibited comparable DPPH scavenging activities. These investigations unveiled that the branched aliphatic chain enforced the coiled molecular conformation and the unsaturated double bond in the phytol portion further fixed the coiled conformation, which contributed to a diminished aggregation tendency and enhanced antioxidant activities in dispersed and bulk oils. The remarkable antioxidant performance of galloyl phytol suggested intriguing and non-toxic natural antioxidant applications in the food industry, such as effectively inhibiting the oxidation of oil and improvement of the quality and shelf life of the oil, which would contribute to the use of tea resources and extending the tea industry chain.
Collapse
|
7
|
Effects of Tea Polyphenol Palmitate Existing in the Oil Phase on the Stability of Myofibrillar Protein O/W Emulsion. Foods 2022; 11:foods11091326. [PMID: 35564049 PMCID: PMC9104160 DOI: 10.3390/foods11091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to explore the effect of adding different concentrations (0, 0.01%, 0.03%, and 0.05% (w/w)) of tea polyphenol palmitate (TPP) in the oil phase on the emulsifying properties of 5 and 10 mg/mL myofibrillar protein (MP). Particle size results revealed that the flocculation of droplets increased as TPP concentration increased and that droplets in 5 mg/mL MP emulsions (25−34 μm) were larger than in 10 mg/mL MP emulsions (14−22 μm). The emulsifying activity index of 5 mg/mL MP emulsions decreased with increasing TPP concentration. The micrographs showed that the droplets of MP emulsions exhibited extensive flocculation at TPP concentrations >0.03%. Compared with 5 mg/mL MP emulsions, 10 mg/mL MP emulsions showed better physical stability and reduced flocculation degree, which coincided with lower delta backscattering intensity (ΔBS) and Turbiscan stability index values. The flow properties of emulsions can be successfully depicted by Ostwald−de Waele models (R2 > 0.99). The concentrations of TPP and protein affect the K values of emulsions (p < 0.05). Altogether, increased protein concentration in the continuous phase could improve emulsion stability by increasing viscosity, offsetting the adverse effects of TPP to a certain extent. This study is expected to promote the rational application of TPP in protein emulsion products of high quality and acceptability.
Collapse
|
8
|
Shen Y, Guo C, Lu T, Ding XY, Zhao MT, Zhang M, Liu HL, Song L, Zhou DY. Effects of gallic acid alkyl esters and their combinations with other antioxidants on oxidative stability of DHA algae oil. Food Res Int 2021; 143:110280. [PMID: 33992380 DOI: 10.1016/j.foodres.2021.110280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/29/2022]
Abstract
The most effective composite antioxidants for DHA algae oil were optimized by combining the selected gallic acid (GA) alkyl ester with other commonly used antioxidants. Results of Rancimat induction time, peroxide value, thiobarbituric acid-reactive substances, and free radical generation indicated that octyl gallate (OG) was the best one in DHA algae oil among GA alkyl esters with various chain lengths. Therefore, OG was used to combine other antioxidants (antioxidant of bamboo leaves, rosemary extract, tea polyphenols, tea polyphenol palmitate (TPP), ascorbyl palmitate, vitamin E, phytic acid and phospholipid) for further improving the oxidative stability of DHA algae oil. The combination of OG + TPP showed the best antioxidant effect among the composite antioxidants of two and three components. Through optimization of mixture ratio, the combination of 53.20 mg/kg OG + 360 mg/kg TPP demonstrated the best antioxidant capacity, which prolonged the shelf life of DHA algae oil by 4.24 folds.
Collapse
Affiliation(s)
- Yan Shen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chao Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ting Lu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xu-Yang Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Man-Tong Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Min Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hui-Lin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, PR China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, PR China.
| |
Collapse
|