1
|
Bermudez-Aguirre D, Sites J, Carter J, Uknalis J, Niemira BA. Effect of Radio Frequency Energy for Intervention Processing on the Quality of Intact Eggs. Foods 2024; 13:3457. [PMID: 39517241 PMCID: PMC11544829 DOI: 10.3390/foods13213457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
During conventional pasteurization, eggs are submerged for 60 min at 56.7 °C, a lengthy and costly process that affects egg quality. Radio frequency (RF), a means to pasteurize eggs without affecting quality, is a novel option based on fast volumetric heating; however, there is scarce information about the quality of such treated food. This research consisted in a comprehensive quality study on eggs treated with RF. The RF system was operated at 40.68 MHz, 40 W and 16 W (8 min total), and 42 rpm. The quality assessment included the determination of Haugh unit, yolk index, compression strength, albumen turbidity, albumen and yolk pH, and yolk color. Additional analyses were conducted to quantify the mineral composition of the eggshell (40.68 MHz, 40 W, 42 rpm, 5.5, 8.5, and 10 min); these samples were observed by SEM. The results showed that RF did not significantly (p > 0.05) change any quality parameters. The mineral composition remained constant in processed eggs. The SEM images of RF-treated eggs showed some smooth spots; however, these areas could exist due to the high variability of the eggshells. RF is an option to process intact eggs, maintaining their fresh quality and keeping the integrity of the eggshell to ensure the food safety of the internal egg components.
Collapse
Affiliation(s)
- Daniela Bermudez-Aguirre
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Joseph Sites
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Joshua Carter
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
- Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market St., Greensboro, NC 27411, USA
| | - Joseph Uknalis
- Microbial and Chemical Food Safety Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Brendan A. Niemira
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
2
|
Tonti M, Verheyen D, Kozak D, Skåra T, Van Impe JFM. Radio frequency inactivation of Salmonella Typhimurium and Listeria monocytogenes in skimmed and whole milk powder. Int J Food Microbiol 2024; 413:110556. [PMID: 38244386 DOI: 10.1016/j.ijfoodmicro.2023.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024]
Abstract
Milk powder is a convenient, shelf-stable food ingredient used in a variety of food products. However, pathogenic bacteria can be present and survive during prolonged storage, leading to outbreaks of foodborne diseases and product recalls. Radio frequency (RF) heating is a processing technology suitable for bulk treatment of milk powder, aiming at microbial inactivation. This study investigates the RF inactivation of Salmonella Typhimurium and Listeria monocytogenes in two types of milk powder; skimmed and whole milk powder. Specifically, the aims were to (i) examine the influence of the powder's composition on bacterial inactivation, (ii) evaluate the response of bacteria with different Gram properties (Gram positive and Gram negative) and (iii) verify the use of Enterococcus faecium as a surrogate for the two microorganisms for the specific RF process. In order to examine exclusively the influence of RF, a non-isothermal temperature profile was used, employing solely different RF energy levels to heat the product to the target temperatures. A log-linear model with a Bigelow-type temperature dependency was fitted to the experimental data. S. Typhimurium was less susceptible to RF treatments in comparison to L.monocytogenes, demonstrating a higher inactivation rate (k) and higher percentage of sublethal injury. A higher k was also observed for both microorganisms in the whole milk powder, indicating that the increased fat content and decreased levels of lactose and protein in the milk powder had an adverse impact on the microbial survival for both pathogens. The surrogate microorganism E. faecium successfully validated the microbial response of the two microorganisms to RF treatments. In general, a low heating rate RF-only process was successful in inactivating the two foodborne pathogens in skimmed and whole milk powder by 4 log(CFU/g).
Collapse
Affiliation(s)
- Maria Tonti
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000 Gent, Belgium; OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium; CPMF(2), Flemish Cluster Predictive Microbiology in Foods - www.cpmf2.be, Belgium.
| | - Davy Verheyen
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000 Gent, Belgium; OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium; CPMF(2), Flemish Cluster Predictive Microbiology in Foods - www.cpmf2.be, Belgium.
| | - Dmytro Kozak
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000 Gent, Belgium; OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium; CPMF(2), Flemish Cluster Predictive Microbiology in Foods - www.cpmf2.be, Belgium.
| | | | - Jan F M Van Impe
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000 Gent, Belgium; OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Belgium; CPMF(2), Flemish Cluster Predictive Microbiology in Foods - www.cpmf2.be, Belgium.
| |
Collapse
|
3
|
Bermudez-Aguirre D, Niemira BA. Radio Frequency Treatment of Food: A Review on Pasteurization and Disinfestation. Foods 2023; 12:3057. [PMID: 37628056 PMCID: PMC10452993 DOI: 10.3390/foods12163057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Radio frequency (RF) is a novel technology with several food processing and preservation applications. It is based on the volumetric heating generated from the product's dielectric properties. The dielectric properties of each material are unique and a function of several factors (i.e., temperature, moisture content). This review presents a list of dielectric properties of several foods and describes the use of RF as an innovative technology for the food industry. This paper includes several examples of pasteurization, fungi inactivation, and disinfestation in selected food products. The aim of this review is to present the potential applications of RF in pasteurization and disinfestation and research needs that should be addressed. RF has been successfully applied in the inactivation of pathogens such as Salmonella spp., Listeria monocytogenes, and Escherichia coli in low- and high-moisture food. The disinfestation of crops is possible using RF because of selective heating. This process inactivates the insects first because of the different dielectric properties between the pests and the food. The products' final quality can be considerably better than conventional thermal processes. The processing time is reduced compared to traditional heating, and thermal damage to the food is minimized. The main drawback of the technology is the lack of uniform heating, mainly when the product is surrounded by a packaging material with different dielectric properties from the food.
Collapse
Affiliation(s)
- Daniela Bermudez-Aguirre
- Food Safety and Intervention Technologies, ERRC, ARS, USDA, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA;
| | | |
Collapse
|
4
|
Espitia J, Verheyen D, Kozak DS, Van Impe JFM. Influence of microbial cell morphology and composition on radio frequency heating of simple media at different frequencies. Sci Rep 2023; 13:10839. [PMID: 37407624 DOI: 10.1038/s41598-023-35705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
The effect of Listeria monocytogenes, Salmonella Typhimurium, and Saccharomyces cerevisiae on RF heating was studied in sterilized Milli-Q water and saline solution during treatments at 27.0 ± 0.6 MHz and 3.0 ± 0.02 MHz for 30 min. The presence of microorganisms caused a significant increase in temperature (maximum to 54.9 °C), with no significant decrease in cell numbers being observed for any conditions. For both media and frequencies, heating rates followed the order S. Typhimurium ≤ L. monocytogenes ≤ S. cerevisiae, except for heating at 3.0 ± 0.02 MHz in saline solution, where heating rates for S. cerevisiae and S. Typhimurium were equal. Generally, heating rates for microorganisms were significantly higher at 27.0 ± 0.6 MHz than at 3.0 ± 0.02 MHz, except for the S. cerevisiae case. Observed phenomena were probably caused by differences in the cell lipid and peptidoglycan content, with interaction effects with salt being present. This study was the first to investigate the influence of the presence of microorganisms on heating behavior of simple media. On the long term, more research on this topic could lead to finding specific RF frequencies more suitable for the heating of specific media and products for various applications.
Collapse
Affiliation(s)
- Julian Espitia
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
| | - Davy Verheyen
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
| | - Dmytro S Kozak
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium
- Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine, 34/1 Acad. Vernadskogo Boul., Kiev, 03142, Ukraine
| | - Jan F M Van Impe
- BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders de Smetstraat 1, 9000, Gent, Belgium.
| |
Collapse
|
5
|
Gao Y, Guan X, Wan A, Cui Y, Kou X, Li R, Wang S. Thermal Inactivation Kinetics and Radio Frequency Control of Aspergillus in Almond Kernels. Foods 2022; 11:foods11111603. [PMID: 35681353 PMCID: PMC9180863 DOI: 10.3390/foods11111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Mold infections in almonds are a safety issue during post-harvest, storage and consumption, leading to health problems for consumers and causing economic losses. The aim of this study was to isolate mold from infected almond kernels and identify it by whole genome sequence (WGS). Then, the more heat resistant mold was selected and the thermal inactivation kinetics of this mold influenced by temperature and water activity (aw) was developed. Hot air-assisted radio frequency (RF) heating was used to validate pasteurization efficacy based on the thermal inactivation kinetics of this target mold. The results showed that the two types of molds were Penicillium and Aspergillus identified by WGS. The selected Aspergillus had higher heat resistance than the Penicillium in the almond kernels. Inactivation data for the target Aspergillus fitted the Weibull model better than the first-order kinetic model. The population changes of the target Aspergillus under the given conditions could be predicted from Mafart’s modified Bigelow model. The RF treatment was effectively used for inactivating Aspergillus in almond kernels based on Mafart’s modified Bigelow model and the cumulative lethal time model.
Collapse
Affiliation(s)
- Yu Gao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Ailin Wan
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Yuan Cui
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (A.W.); (Y.C.)
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China; (Y.G.); (X.G.); (X.K.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
- Correspondence: (R.L.); (S.W.); Tel./Fax: +86-29-8709-2391 (R.L. & S.W.)
| |
Collapse
|
6
|
Guan X, Lin B, Xu Y, Yang G, Xu J, Zhang S, Li R, Wang S. Recent developments in pasteurising seeds and their products using radio frequency heating: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiangyu Guan
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Biying Lin
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shuang Zhang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| | - Rui Li
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| |
Collapse
|