1
|
Feitosa BF, Xavier LE, Araújo JSFD, Gonçalves MC, Santos KMOD, Egito ASD, Cavalcanti MT. Bioconservation of artisanal raw goat milk cheese produced with lactic acid bacteria of the genus Lacticaseibacillus spp. Food Res Int 2025; 206:116070. [PMID: 40058921 DOI: 10.1016/j.foodres.2025.116070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/09/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
The objective was to evaluate the bioconservation of artisanal raw goat milk cheese produced with lactic acid bacteria of the genus Lacticaseibacillus spp. Cheeses were prepared with the addition of 2 % (v/v) of autochthonous lactic culture, while a control group was produced without the addition of these bacteria. Ripening was carried out at room temperature in the Brazilian semi-arid region. After 20 days of room ripening, the cheeses were classified as hard (< 36.0 % moisture). There was more intense proteolytic activity, and a more accelerated reduction of the pathogenic and deteriorating microbial population in the cheeses, which contained a viable lactic acid bacteria count (6.45-7.35 log CFU g-1). The autochthonous strains of Lacticaseibacillus spp. may have contributed to the bioconservation and acceptability of raw goat milk cheese, making it possible to reduce production costs with imported starter cultures and preservation technologies, such as pasteurization and refrigeration. The cheeses were better accepted in the form of "grated cheese" when they presented uniform characteristics, typical cheese flavor, sandy, pleasant taste, and residual yogurt aroma.
Collapse
Affiliation(s)
- Bruno Fonsêca Feitosa
- University of Campinas, 13056-405 Campinas, SP, Brazil; Federal University of Campina Grande, 58840-000 Pombal, PB, Brazil; State University of Amapá, 68950-000 Amapá, AP, Brazil..
| | | | | | | | | | | | | |
Collapse
|
2
|
Almasri RS, Bedir AS, Ranneh YK, El-Tarabily KA, Al Raish SM. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients 2024; 16:3848. [PMID: 39599634 PMCID: PMC11597306 DOI: 10.3390/nu16223848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The nutritional composition, antimicrobial properties, and health benefits of camel milk (CAM), cow milk (COM), and goat milk (GOM) have been extensively studied for their roles in managing diabetes and cardiovascular diseases (CVD). This review compares these milk types' nutritional and therapeutic properties, emphasizing their applications in chronic disease management. CAM is rich in insulin-like proteins, vitamins, minerals, and bioactive compounds that benefit glycemic control and cardiovascular health. It also exhibits potent antioxidants, anti-inflammatory, and lipid-lowering effects, which are crucial for managing diabetes and reducing CVD risk factors. While COM and GOM provide essential nutrients, their impact on metabolic health differs. GOM is known for its digestibility and antihypertensive properties, whereas COM's higher lactose content may be less suitable for diabetic patients. CAM's unique nutritional profile offers distinct therapeutic benefits, particularly for diabetes and CVD management. Further research is needed to clarify its mechanisms of action and optimize its clinical application for chronic disease prevention and management.
Collapse
Affiliation(s)
- Razan S. Almasri
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Yazan K. Ranneh
- Department of Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
3
|
Zhang H, You C, Wang Y. Metabolomics study on fermentation of Lactiplantibacillus plantarum ST-III with food-grade proliferators in milk. J Dairy Sci 2024; 107:9005-9014. [PMID: 39004129 DOI: 10.3168/jds.2024-25017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Milk is a naturally complex medium that is suitable for the growth of most lactic acid bacteria. Unfortunately, Lactiplantibacillus plantarum ST-III, a probiotic strain of bacteria used to produce fermented foods, grows poorly in milk without supplementation. To solve this problem, we used fresh pineapple and mung bean juice to develop an edible proliferator for L. plantarum ST-III. Our comparative analysis of changes in metabolomics before and after fermentation revealed that amino acids, dipeptides, nucleotides, and vitamins were the most consumed compounds, implying the mechanism of proliferation. These results, in combination with Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis, were used to screen substances that could promote the growth of L. plantarum ST-III in milk. To explore which component of the proliferator was required for L. plantarum ST-III growth, we supplemented milk with several combinations of substances from the proliferator that were identified as promoting growth. The experimental results showed that if any of these substances were missing, the concentration of viable bacteria was lower. The highest concentration of viable bacteria could only be obtained when all the substances were added to the milk. Compared with the control, the concentration of viable bacteria was about 32-fold higher in milk that contained the proliferator. Thus, the study proves that milk primarily lacks available amino acids, dipeptides, uracil, xanthine, nicotinamide, and manganese, which are necessary for the growth of L. plantarum ST-III.
Collapse
Affiliation(s)
- Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China.
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China
| | - Yunqing Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China
| |
Collapse
|
4
|
Du X, Jiang C, Wang S, Jing H, Mo L, Ma C, Wang H. Preparation, identification, and inhibitory mechanism of dipeptidyl peptidase IV inhibitory peptides from goat milk whey protein. J Food Sci 2023; 88:3577-3593. [PMID: 37458288 DOI: 10.1111/1750-3841.16694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023]
Abstract
This study explores potential hypoglycemic mechanisms by preparing and identifying novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from goat milk (GM) whey protein. Papain was used to hydrolyze the GM whey protein. After purification by ultrafiltration, the Sephadex column, and preparative RP-HPLC, the peptide inhibited DPP-IV, α-glucosidase, and α-amylase with IC50 of 0.34, 0.37, and 0.72 mg/mL, respectively. To further explore the inhibitory mechanism of peptides on DPP-IV, SPPEFLR, LDADGSY, YPVEPFT, and FNPTY were identified and synthesized for the first time, with IC50 values of 56.22, 52.16, 175.7, and 62.32 µM, respectively. Molecular docking and dynamics results show that SPPEFLR, LDADGSY, and FNPTY bind more tightly to the active pocket of DPP-IV, which was consistent with the in vitro activity. Furthermore, the first three N-terminals of SPPEFLR and FNPTY peptides exhibit proline characteristics and competitively inhibit DPP-IV. Notably, the first N-terminal leucine of LDADGSY may play a key role in inhibiting DPP-IV.
Collapse
Affiliation(s)
- Xiaojing Du
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chengyu Jiang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shan Wang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Huijuan Jing
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling Mo
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chaoyang Ma
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxin Wang
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Park T, Lee Y, Lee SS, Lee SS. Oral administration of Pinus koraiensis cone essential oil reduces rumen methane emission by altering the rumen microbial composition and functions in Korean native goat ( Capra hircus coreanae). Front Vet Sci 2023; 10:1168237. [PMID: 37275608 PMCID: PMC10234127 DOI: 10.3389/fvets.2023.1168237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
This study aimed to investigate Pinus koraiensis cone essential oil (PEO) as a methane (CH4) inhibitor and determine its impact on the taxonomic and functional characteristics of the rumen microbiota in goats. A total of 10 growing Korean native goats (Capra hircus coreanae, 29.9 ± 1.58 kg, male) were assigned to different dietary treatments: control (CON; basal diet without additive) and PEO (basal diet +1 g/d of PEO) by a 2 × 2 crossover design. Methane measurements were conducted every 4 consecutive days for 17-20 days using a laser CH4 detector. Samples of rumen fluid and feces were collected during each experimental period to evaluate the biological effects and dry matter (DM) digestibility after PEO oral administration. The rumen microbiota was analyzed via 16S rRNA gene amplicon sequencing. The PEO oral administration resulted in reduced CH4 emission (eructation CH4/body weight0.75, p = 0.079) without affecting DM intake; however, it lowered the total volatile fatty acids (p = 0.041), molar proportion of propionate (p = 0.075), and ammonia nitrogen (p = 0.087) in the rumen. Blood metabolites (i.e., albumin, alanine transaminase/serum glutamic pyruvate transaminase, creatinine, and triglyceride) were significantly affected (p < 0.05) by PEO oral administration. The absolute fungal abundance (p = 0.009) was reduced by PEO oral administration, whereas ciliate protozoa, total bacteria, and methanogen abundance were not affected. The composition of rumen prokaryotic microbiota was altered by PEO oral administration with lower evenness (p = 0.054) observed for the PEO group than the CON group. Moreover, PICRUSt2 analysis revealed that the metabolic pathways of prokaryotic bacteria, such as pyruvate metabolism, were enriched in the PEO group. We also identified the Rikenellaceae RC9 gut group as the taxa potentially contributing to the enriched KEGG modules for histidine biosynthesis and pyruvate oxidation in the rumen of the PEO group using the FishTaco analysis. The entire co-occurrence networks showed that more nodes and edges were detected in the PEO group. Overall, these findings provide an understanding of how PEO oral administration affects CH4 emission and rumen prokaryotic microbiota composition and function. This study may help develop potential manipulation strategies to find new essential oils to mitigate enteric CH4 emissions from ruminants.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Jun Sik Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yookyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonju, Republic of Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Sunchon, Republic of Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Ma Y, Li J, Huang Y, Liu X, Dou N, Zhang X, Hou J, Ma J. Physicochemical stability and in vitro digestibility of goat milk affected by freeze-thaw cycles. Food Chem 2023; 404:134646. [DOI: 10.1016/j.foodchem.2022.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
7
|
Ma Y, Li J, Liu Y, Dou N, Mu S, Wei X, Bilawal A, Hou J, Jiang Z. Lactitol and β-cyclodextrin alleviate the intensity of goaty flavor. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1588-1592. [PMID: 36318369 DOI: 10.1002/jsfa.12304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Goat milk has balanced nutritional composition, is conducive to digestion and absorption, and does not easily lead to allergic reactions. However, the special goaty flavor in milk has seriously affected consumer acceptance. It is imperative to alleviate the goaty flavor in a safe and efficient way. RESULTS This study indicated that the supplementation of 6 g kg-1 β-cyclodextrin or 8 g kg-1 lactitol in goat milk significantly alleviated goaty flavor and improved sensory characteristics. Furthermore, the supplementation of β-cyclodextrin and lactitol had a synergistic effect in reducing the content of free fatty acids that cause goaty flavor. The content of caproic acid (C6 H12 O2 ), octanoic acid (C8 H6 O2 ), and decanoic acid (C10 H20 O2 ) decreased by 42.46%, 39.45%, and 46.41%, respectively, after a combined group was supplemented with 6 g kg-1 β-cyclodextrin and 7 g kg-1 lactitol, which was significantly lower than in groups given β-cyclodextrin or lactitol individually. CONCLUSION This study provides a novel and effective approach to alleviate goaty flavor and promote the competitiveness of goat milk products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jinzhe Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yue Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Nianxu Dou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Sinan Mu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xuan Wei
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
- Heilongjiang Green Food Science Research Institute, Harbin, People's Republic of China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China
- Heilongjiang Green Food Science Research Institute, Harbin, People's Republic of China
| |
Collapse
|
8
|
Williamson JR, Callaway TR, Lourenco JM, Ryman VE. Characterization of rumen, fecal, and milk microbiota in lactating dairy cows. Front Microbiol 2022; 13:984119. [PMID: 36225385 PMCID: PMC9549371 DOI: 10.3389/fmicb.2022.984119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.
Collapse
|
9
|
Jia W, Wu X, Zhang R, Wang X, Shi L. Novel insight into the resilient drivers of bioaccumulation perchlorate on lipid nutrients alterations in goat milk by spatial multi-omics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Liu Y, Zhang F. Comparison of whole goat milk and its major fractions regarding the modulation of gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3618-3627. [PMID: 34873691 DOI: 10.1002/jsfa.11708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Goat milk can be important for human nutrition because of its nutritional value, which may be attributed to its richness in protein, lactose, fat, and other bioactive components. This study compared the diversity and composition of gut microbiota in response to whole goat milk and its major fractions (milk fat, casein, milk whey, whey protein, and whey supernatant). Goat milk, its major fractions, and sterile distilled water (for the control group) were administered to mice intragastrically, and gut microbiota were compared in these groups using metagenomic analysis. RESULTS We observed distinct patterns of gut microbiota from different diet groups. The sample distance heatmap showed that, compared with other goat milk fractions, gut microbiota in the casein group was more similar to that in the whole goat-milk group. The relative abundance of the genus Lactobacillus increased significantly after whole goat-milk treatment; the milk whey fraction increased the abundance of Blautia; milk fat and milk whey related fractions treatment promoted the population of Bacteroides. The network analysis showed that genera Lactobacillus and Lactococcus were negatively associated with Helicobacter and Acinetobacter, respectively. CONCLUSION Fractions of goat milk could contain different gut microbiota from whole goat milk. Consumption of certain goat milk fractions could increase the ingestion of beneficial bacteria and inhibit the growth of some pathogenic bacteria. Our results could provide the basis for the research into and development of goat-milk based functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Nanosized niosomes as effective delivery device to improve the stability and bioaccessibility of goat milk whey protein peptide. Food Res Int 2022; 161:111729. [DOI: 10.1016/j.foodres.2022.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
|
12
|
Liu Y, Zhang F. Changes of antibiotic resistance genes and gut microbiota after the ingestion of goat milk. J Dairy Sci 2022; 105:4804-4817. [PMID: 35346469 DOI: 10.3168/jds.2021-21325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
Abstract
Antibiotic resistance genes, as newly emerging contaminants, have become a serious challenge to public health through the food chain. The gut of humans and animals is an important reservoir for the development and dissemination of antibiotic resistance genes because of the great abundance and diversity of intestinal microbiota. In the present study, we evaluated the influence of goat milk on the diversity and abundance of antibiotic resistance genes and gut microbial communities, especially pathogenic bacteria. Male mice were used, 12 for each of the 2 groups: a control group that received sterile distilled water and a treated group that received goat milk, and gut microbiota and antibiotic resistance genes were compared in these groups using metagenomic analysis. The results revealed that ingestion of goat milk decreased the diversity and abundance of antibiotic resistance genes in the mice gut. The relative abundance of fluoroquinolone, peptide, macrolide, and β-lactam resistance genes in the total microbial genes significantly decreased after the intervention. Goat milk intake also significantly reduced the abundance of pathogenic bacteria, such as Clostridium bolteae, Clostridium symbiosum, Helicobacter cinaedi, and Helicobacter bilis. Therefore, goat milk intake might decrease the transfer potential of antibiotic resistance gene to pathogenic bacteria in the gut. In addition, bacteria with multiple resistance mechanisms accounted for approximately 4.5% of total microbial communities in the control group, whereas it was not detectable in the goat milk group, indicating the total inhibition by goat milk intake. This study highlights the influence of goat milk on antibiotic resistome and microbial communities in the gut, and provides a new insight into the function of goat milk for further study.
Collapse
Affiliation(s)
- Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|