1
|
Li Z, Zhang T, Zhou R, Zhang X, Ren J, Diao M. Effects of pasteurization on set yogurt fortified with astaxanthin-rich yolk: Evaluation of physicochemical properties, stability, and biological activity. J Dairy Sci 2025; 108:3499-3514. [PMID: 39986465 DOI: 10.3168/jds.2024-26012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 02/24/2025]
Abstract
Pasteurization usually has a large influence on yogurt and astaxanthin. This study aimed to investigate the effects of 3 pasteurization methods, including low-temperature, long-time treatment at 63°C for 30 min (LTLT-1) and 65°C for 30 min (LTLT-2), and high-temperature, short-time treatment at 75°C for 15 s (HTST), on the physicochemical properties, stability, and biological activity of set yogurt fortified with astaxanthin-rich yolk. The results showed that the LTLT-2 group had a higher astaxanthin retention, with no significant difference from the LTLT-1 group. The in vitro digestion results also confirmed that LTLT-2 had a high free radical scavenging capacity. Temperatures between 63°C and 65°C are within a safe range for preventing significant heat degradation of astaxanthin. Over the 21-d storage period, LTLT-2 significantly outperformed LTLT-1 and HTST regarding texture and particle size. This work demonstrates that the pasteurization conditions of 65°C for 30 min could be used to prepare a functional set yogurt with stable quality and antioxidant activity.
Collapse
Affiliation(s)
- Ziwei Li
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Runhao Zhou
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Xiaoyan Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Jinru Ren
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun, China 130062.
| |
Collapse
|
2
|
Zhang J, Liu M, Han T, Luo L, Zhang Y, Yuan G, Fang X, Han F, Chen X, Wang Y. Advance toward function, production, and delivery of natural astaxanthin: A promising candidate for food ingredients with future perspectives. Food Chem 2025; 463:141428. [PMID: 39353306 DOI: 10.1016/j.foodchem.2024.141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Astaxanthin (AST) exhibits potent antioxidant activity, effectively preventing neurological diseases and cancer. Presently, producing AST from microorganisms like Haematococcus pluvialis and Phaffia rhodozyma is a growing trend. This review summarizes the main research topics on AST in the past five years. AST plays a crucial role in cancer and diabetes prevention, as well as neuroprotection, however, the presence of both free and esterified forms of AST results in differences in their functionality and applications. The primary challenges in industrial production of natural AST lie in breeding high-yield natural producers and developing methods to enhance yield. The use of high-quality food matrix materials and preparation methods is crucial for the delivery system of loaded AST. This study elucidates the bottlenecks and future development directions encountered by natural AST during industrialization, aiming to promote the healthy and rapid growth of the food industry.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Meizhen Liu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tiantian Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lu Luo
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
| | - Ying Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xubo Fang
- Zhejiang International Maritime College, Zhoushan, China
| | - Fangrui Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
3
|
Li N, Wang Y, Tan Z, Xu Y, Liu X, Liu Y, Zhou D, Li D. Effect of ultra-high pressure heat-assisted technology combined with L-cysteine on the color of ready-to-eat shrimp during storage. Food Chem 2024; 460:140634. [PMID: 39079355 DOI: 10.1016/j.foodchem.2024.140634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
This study used ultra-high pressure processing (HPP) heat-assisted technology combined with L-cysteine (L-cys) to process ready-to-eat (RTE) shrimp. Subsequently, the effects of physical field and chemical modifications on the color of RTE shrimp were studied. The results showed that the RTE shrimp treated with HPP-Heat-L-cys showed better performance in terms of brightness value (65.25) and astaxanthin (AST) content (0.71 μg/g) during storage, maintaining the original color of RTE shrimp effectively. In addition, it was observed that the application of HPP-Heat-L-cys significantly delayed phenol oxidation, lipid oxidation, and Maillard reaction compared with traditional HPP or heat treatments. Specifically, the total phenolic content of RTE shrimp treated with HPP-Heat-L-cys was higher than that of other samples, but the TBARS and browning index were lower. Furthermore, HPP-Heat-L-cys could delay the production of dark products (such as 2-methylanthraquinone, p-benzoquinone, lipofuscin and melanin), ultimately safeguarding the color stability of RTE shrimp during storage.
Collapse
Affiliation(s)
- Na Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yefan Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Yunpeng Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Yuxin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Academy of Food Interdisciplinary Science, Dalian Technology Innovation Center for Chinese Prepared Food, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Li N, Fan X, Wang Y, Zhang K, Liu R, Xu Y, Tan Z, Xu W, Zhou D, Li D. Investigation of isomerization and oxidation of astaxanthin in ready-to-eat Litopenaeus vannamei during accelerated storage. Food Res Int 2024; 195:114983. [PMID: 39277244 DOI: 10.1016/j.foodres.2024.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Astaxanthin (AST), the natural pigment in Litopenaeus vannamei, is susceptible to oxidation and isomerization, leading to the fading of the orange-red color in ready-to-eat (RTE) shrimps. This study specifically investigated the changes mechanism in AST content, including geometric and stereoisomers, as well as oxidation degradation, throughout the storage process of RTE shrimps. The results showed that the total amount of AST decreased by 46.76 % after 45 days of storage at 40 °C. The levels of geometric isomers (all-E, 9-Z, 13-Z) and stereoisomers (3S,3'S, 3S,3'R, 3R,3'R) gradually decreased over time. Notably, 9-Z and 3S,3'S isomers, known for their strong antioxidant activity, were reduced by 83.57 % and 61.64 % respectively. Additionally, AST underwent oxidative degradation, forming short-chain compounds (astaxanthinal or astaxanthinone), with the main products being Apo-14'-astaxanthinal and Apo-7-astaxanthinone DHA ester. These findings provide a theoretical foundation for further research on the degradation mechanism of AST, and offer valuable insights into the color protection of RTE shrimps.
Collapse
Affiliation(s)
- Na Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Fan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yefan Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Rong Liu
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Yunpeng Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhifeng Tan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wensi Xu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Deyang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Gu L, Zhu Q, Zou X, Song R. Antibacterial Effect of Shrimp By-Products Hydrolysate on Specific Spoilage Organisms of Squid. Molecules 2023; 28:molecules28104105. [PMID: 37241846 DOI: 10.3390/molecules28104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In order to further develop and utilize shrimp processing by-products, in this study, a novel antibacterial hydrolysate of shrimp by-products by pepsin hydrolysis (SPH) was prepared. The antibacterial effect of SPH on specific spoilage organisms of squid after end storage at room temperature (SE-SSOs) was investigated. SPH showed an antibacterial effect on the growth of SE-SSOs, with (23.4 ± 0.2) mm of inhibition zone diameter. The cell permeability of SE-SSOs was enhanced after SPH treatment for 12 h. Some bacteria were twisted and shrunk, while pits and pores formed and intracellular contents leaked under scanning electron microscopy observation. The flora diversity of SE-SSOs treated with SPH was determined by a 16S rDNA sequencing technique. Results showed that SE-SSOs were mainly composed of the phyla of Firmicutes and Proteobacteria, among which Paraclostridium (47.29%) and Enterobacter (38.35%) were dominant genera. SPH treatment resulted in a significant reduction in the relative abundance of the genus Paraclostridium and increased the abundance of Enterococcus. Linear discriminant analysis (LDA) of LEfSe conveyed that SPH treatment had a significant impact on altering the bacterial structure of SE-SSOs. The 16S PICRUSt of Cluster of Orthologous Group (COG) annotation revealed that SPH treatment for 12 h could significantly increase the function of transcription level [K], while SPH treatment for 24 h could downregulate post-translational modifications, protein turnover, and chaperone metabolism functions [O]. In conclusion, SPH has a proper antibacterial effect on SE-SSOs and can change the flora structure of SE-SSOs. These findings will provide a technical basis for the development of inhibitors of squid SSOs.
Collapse
Affiliation(s)
- Luo Gu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qiuyu Zhu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoyu Zou
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
6
|
Jia Z, Song R, Xu Y, Liu X, Zhang X. Astaxanthin absorption modulated antioxidant enzyme activity and targeted specific metabolic pathways in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7003-7016. [PMID: 35689476 DOI: 10.1002/jsfa.12062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Saponification contributed to an increase in the in vitro antioxidant activity of astaxanthin (Asta) extracts derived from Penaeus sinensis (Solenocera crassicornis) by-products. However, the influence of non-saponification (N-Asta) and saponification Asta (S-Asta) absorption on antioxidant activity in vivo was limited. The antioxidant properties of N-Asta and S-Asta were therefore compared in Sprague Dawley male rats after 6 h and 12 of absorption using biochemistry assays combined with an untargeted metabonomics strategy. RESULTS Non-saponified Asta and S-Asta showed similar digestive properties in a stimulated gastrointestinal tract. Increased glutathione content and decreased malondialdehyde content were measured in the liver tissues of N-Asta and S-Asta treated rats after 12 h of absorption. Absorption of N-Asta increased liver total superoxide dismutase, glutathione peroxidase, and catalase activity. Treatment with S-Asta up-regulated NAD(P)H: quinine oxidoreductase-1, and heme oxygenase-1 expression was associated with the nuclear erythroid 2-related factor 2/antioxidant responsive element pathway at the end of 12 h absorption. With partial least square-discriminant analysis and metabolite heatmap profiles, the S-Asta group was clearly separated from the N-Asta group. The S-Asta treatment also demonstrated stronger influences on plasma metabolites than the N-Asta treatment. Both N-Asta and S-Asta absorption showed critical roles in the regulation of specific metabolites, and 15 potential biomarkers were identified in eight key pathways to separate these experimental groups after 12 h of absorption. However, an increased serotonin level was only detected in the S-Asta group after 12 h absorption. CONCLUSION Absorption of N-Asta and S-Asta induced different antioxidant effects in normal rats, which were associated with metabolite changes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
7
|
Influence mechanisms of different setting time at low temperature on the gel quality and protein structure of Solenocera crassicornis surimi. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Xu Y, Jia Z, Wang J, Sun J, Song R. Property and Stability of Astaxanthin Emulsion Based on Pickering Emulsion Templating with Zein and Sodium Alginate as Stabilizer. Int J Mol Sci 2022; 23:9386. [PMID: 36012651 PMCID: PMC9408833 DOI: 10.3390/ijms23169386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Astaxanthin loaded Pickering emulsion with zein/sodium alginate (SA) as a stabilizer (named as APEs) was developed, and its structure and stability were characterized. The encapsulation efficiency of astaxanthin (Asta) in APEs was up to 86.7 ± 3.8%, with a mean particle size of 4.763 μm. Freeze-dried APEs showed particles stacked together under scanning electronic microscope; whereas dispersed spherical nanoparticles were observed in APEs dilution under transmission electron microscope images. Confocal laser scanning microscope images indicated that zein particles loaded with Asta were aggregated with SA coating. X-ray diffraction patterns and Fourier transform infrared spectra results showed that intermolecular hydrogen bonding, electrostatic attraction and hydrophobic effect were involved in APEs formation. APEs demonstrated non-Newtonian shear-thinning behavior and fit well to the Cross model. Compared to bare Asta extract, APEs maintained high Asta retention and antioxidant activity when heated from 50 to 10 °C. APEs showed different stability at pH (3.0-11.0) and Na+, K+, Ca2+, Cu2+ and Fe2+ conditions by visual, zeta potential and polydispersity index measurements. Additionally, the first order kinetics fit well to describe APEs degradation at pH 3.0 to 9.0, Na+, and K+ conditions. Our results suggest the potential application of Asta-loaded Pickering emulsion in food systems as a fortified additive.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiaxing Wang
- Research Office of Marine Biological Resources Utilization and Development, Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Jipeng Sun
- Research Office of Marine Biological Resources Utilization and Development, Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
9
|
Song R, Xu Y, Jia Z, Liu X, Zhang X. Integration of intestinal microbiota and metabonomics to elucidate different alleviation impacts of non-saponification and saponification astaxanthin pre-treatment on paracetamol-induced oxidative stress in rats. Food Funct 2022; 13:1860-1880. [PMID: 35084415 DOI: 10.1039/d1fo02972j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal microbiota and metabonomics were integrated to investigate the efficiency of non-saponification or saponification astaxanthin (N-Asta or S-Asta) derived from Penaeus sinensis by-products on alleviating paracetamol (PCM)-induced oxidative stress. Pre-treatment with N-Asta or S-Asta for 14 days restored the cellular morphology of the intestine and increased glutathione (GSH) levels under PCM overdose in rats. However, S-Asta displayed higher adsorption than that of N-Asta. PCM overdose reduced the richness and diversity of intestinal microbiota in the model group. Comparably, N-Asta or S-Asta pre-treatment increased the Actinobacteria abundance. Increased phyla Bacteroidetes and Verrucomicrobia were only found in the S-Asta-pre-treated group. At the genus level, N-Asta pre-treatment increased Lactobacillus and Parasutterella abundance, whereas S-Asta pre-treatment elevated Bacteroidales_S24-7_group_norank and Ruminococcaceae_uncultured. Compared to the control and model groups, remarkable increases of fecal short-chain fatty acids were detected in both N-Asta and S-Asta pre-treatment groups, suggesting the contribution of N-Asta and S-Asta adsorption to SCFA-producing bacteria enrichment. Furthermore, the genera of Ruminococcaceae_uncultured, Ruminiclostridium_9, Ruminococcaceae_unclassified and Ruminococcus_1 showed high correlations with propionic acid, isobutyric acid, butyric acid, isovaleric acid and valeric acid increases in the S-Asta pre-treated group. Seventeen plasma biomarker metabolites in more than 10 metabolic pathways were responsible for the difference between the N-Asta and S-Asta pre-treated groups. Metabolites GSH, retinol, all-trans-Retinoic acid and taurine related to antioxidant activities were significantly accumulated in the S-Asta pre-treated group, while increasing taurocholic acid levels associated with the anti-inflammatory activity was found in the N-Asta-pre-treated group. Therefore, N-Asta and S-Asta could have potential applications in counterbalancing intestinal flora and metabolite disturbances by overdose chemical induction.
Collapse
Affiliation(s)
- Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|