1
|
Liu Q, Xu J, Zhou X, Li P, Zhang X, Jiang L, Liu Y. Studying the release of soybean taste-active peptides prepared by proteases derived from different fungi through Peptidomics. Food Chem 2025; 484:144443. [PMID: 40279897 DOI: 10.1016/j.foodchem.2025.144443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/12/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the release of taste-active peptides from soybean isolate catalyzed by proteases from Aspergillus flavus strains. The frequent presence of Leu at the C-terminus and the hydrophilic amino acids at the N-terminus related to bitterness and umami taste of hydrolysates, respectively. Detailly, H40650 demonstrating high umami, low bitterness, and a high peptide yield. During the hydrolysis of H40650, umami taste changes were associated with the content of peptides <1 kDa and 28 umami peptides, while bitterness was linked to the content of peptides <3 kDa and 30 bitter peptides. Additionally, most taste-active peptides were derived from the 7S globulin α subunit and 11S globulin G2. The protease produced by CGMCC 40650 has marked specificity for the region of 281-333 amino acids in protein P0D15, which contained 24.53 % umami amino acids. These findings could offer new insights into the preparation of taste-active peptides.
Collapse
Affiliation(s)
- Qianqian Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jucai Xu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiao Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Pao Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinxin Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, Shaoguan, Guangdong, 512005, China.
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Tu D, Kang J, Li Q, Deng M, Liu M, Liu W, Ming J, Brennan M, Brennan C, You L. Exploring the Core Functional Microbiota Related to Flavor Compounds in Douchi from the Sichuan-Chongqing Region. Foods 2025; 14:810. [PMID: 40077513 PMCID: PMC11898810 DOI: 10.3390/foods14050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Douchi is a traditional Chinese fermented soybean product. In the Sichuan-Chongqing region, Mucor-type douchi was particularly famous for its distinctive flavor. Nevertheless, the association between microorganisms and douchi flavor is still poorly understood. In this study, high-throughput sequencing, amino acid analysis, and gas chromatography-mass spectrometry (GC-MS) were used to investigate the bacterial and fungal profiles as well as the flavor compounds (sixteen amino acids and one-hundred volatile flavor compounds) of seven different types of douchi. High levels of glutamic and aspartic acids were observed. Microbial analysis found that Bacillus, Tetragenococcus, Weissella, Aspergillus, Mucor, and Penicillium were the prime microorganisms. In total, 100 volatile components were detected; however, none of them was common to all the douchi products, although most volatile components had the aromas of flowers, fruits, caramel, and cocoa. An analysis of the flavor compounds was conducted using two-way orthogonal partial least-squares discriminant analysis (O2PLS-DA). Based on the analysis, it was found that Glu had negative correlations with most microorganisms, and Aspergillus had positive correlations with 2-pentylfuran and phenylacetaldehyde. This study provides a theoretical foundation for the regulation and enhancement of douchi flavor.
Collapse
Affiliation(s)
- Dawei Tu
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; (D.T.); (L.Y.)
| | - Junhan Kang
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Qingqing Li
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Meilin Deng
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Meiyan Liu
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Wenjun Liu
- College of Food Science, Southwest University, Chongqing 400715, China;
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Margaret Brennan
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; (M.B.); (C.B.)
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; (M.B.); (C.B.)
| | - Linfeng You
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; (D.T.); (L.Y.)
| |
Collapse
|
3
|
Jiang L, Chen Y, Zhao T, Li P, Liao L, Liu Y. Analysis of differential metabolites in Liuyang douchi at different fermentation stages based on untargeted metabolomics approach. Food Chem X 2025; 25:102097. [PMID: 39844959 PMCID: PMC11751413 DOI: 10.1016/j.fochx.2024.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025] Open
Abstract
The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed. Notably, the qu-making and pile-fermentation stage of douchi could be easily distinguished according to their metabolites profile, and pile-fermentation stage showed the most abundant metabolites. Specifically, organic acid, such as succinic acid and lactic acid, accumulated during pile-fermentation, as well as amino acids and derivatives. Especially glutamate (Glu), which contributed to the umami taste, increased form 0.82 mg/g to 15.90 mg/g after fermentation. Meanwhile, metabolisms related to amino acids were also the main enrichment metabolic pathways. Among them, some flavor compunds such as phenylacetaldehyde might drived from phenylalanine metabolism. These results could provide a new understanding on the metabolic characteristics during Liuyang douchi fermentation.
Collapse
Affiliation(s)
- Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Yi Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Pao Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Xie J, Gänzle M. Microbiology of fermented soy foods in Asia: Can we learn lessons for production of plant cheese analogues? Int J Food Microbiol 2023; 407:110399. [PMID: 37716309 DOI: 10.1016/j.ijfoodmicro.2023.110399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The food industry is facing the challenge of creating innovative, nutritious, and flavored plant-based products, due to consumer's increasing demand for the health and environmental sustainability. Fermentation as a unique and effective tool plays an important role in the innovation of food products. Traditional fermented soy foods are popular in many Asian and African countries as nutritious, digestible and flavorful daily staples or condiments. They are produced by specific microorganisms with the unique fermentation process in which microorganisms convert the ingredients of whole soybean or soybean curd to flavorful and functional molecules. This review provides an overview on traditional fermented food produced from soy, including douchi, natto, tempeh, and sufu as well as stinky tofu, including the background of these products, the manufacturing process, and the microbial diversity involved in fermentation procedures as well as flavor volatiles that were identified in the final products. The contribution of microbes to the quality of these five fermented soy foods is discussed, with the comparison to the role of cheese ripening microorganisms in cheese flavor formation. This communication aims to summarize the microbiology of fermented soy foods in Asia, evoking innovative ideas for the development of new plant-based fermented foods especially plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Succession and Diversity of Microbial Flora during the Fermentation of Douchi and Their Effects on the Formation of Characteristic Aroma. Foods 2023; 12:foods12020329. [PMID: 36673421 PMCID: PMC9857697 DOI: 10.3390/foods12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography-mass spectrometry, and Spearman correlation analysis were conducted to study the changes in the microbial community and characteristic flavor during the fermentation process. Aspergillus spp. was dominant in the early stage of fermentation, whereas Staphylococcus spp., Bacillus spp., and Millerozyma spp. became dominant later. At the early stage, the main flavor compounds were characteristic soy-derived alcohols and aldehydes, mainly 1-hexanol, 1-octen-3-ol, and nonanal. In the later stage, phenol, 2-methoxy-, and 3-octanone were formed. Correlation analysis showed that six bacterial genera and nine fungal genera were significantly correlated with the main volatile components, with higher correlation coefficients, occurring on fungi rather than bacteria. Alcohols and aldehydes were highly correlated with the relative abundance of bacteria, while that of yeast species such as Millerozyma spp., Kodamaea spp., and Candida spp. was positively correlated with decanal, 3-octanol, 2-methoxy-phenol, 4-ethyl-phenol, 3-octanone, and phenol. The novelty of this work lies in the molds that were dominant in the pre-fermentation stage, whereas the yeasts increased rapidly in the post-fermentation stage. This change was also an important reason for the formation of the special flavor of Douchi. Correlation analysis of fungi and flavor substances was more relevant than that of bacteria. As a foundation of our future focus, this work will potentially lead to improved quality of Douchi and shortening the production cycle by enriching the abundance of key microbes.
Collapse
|
6
|
Xiong TH, Shi C, Mu CK, Wang CL, Ye YF. Rise and metabolic roles of Vibrio during the fermentation of crab paste. Front Nutr 2023; 10:1092573. [PMID: 36908913 PMCID: PMC9998518 DOI: 10.3389/fnut.2023.1092573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Microbial community may systematically promote the development of fermentation process of foods. Traditional fermentation is a spontaneous natural process that determines a unique nutritional characteristic of crab paste of Portunus trituberculatus, However, rare information is available regarding the development pattern and metabolic role of bacterial community during the fermentation of crab paste. Here, using a 16S rRNA gene amplicon sequencing technology, we investigated dynamics of bacterial community and its relationship with metabolites during the fermentation of crab paste. The results showed that bacterial community changed dynamically with the fermentation of crab paste which highlighted by consistently decreased α-diversity and overwhelming dominance of Vibrio at the later days of fermentation. Vibrio had a positive correlation with trimethylamine, hypoxanthine, formate, and alanine while a negative correlation with inosine and adenosine diphosphate. In contrast, most of other bacterial indicators had a reverse correlation with these metabolites. Moreover, Vibrio presented an improved function potential in the formation of the significantly increased metabolites. These findings demonstrate that the inexorable rise of Vibrio not only drives the indicator OTUs turnover in the bacterial community but also has incriminated the quality of crab paste from fresh to perished.
Collapse
Affiliation(s)
- Tian-Han Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ce Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chang-Kao Mu
- School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Chun-Lin Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yang-Fang Ye
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Contribution of microbial communities to flavors of Pixian Douban fermented in the closed system of multi-scale temperature and flow fields. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Tan C, Zhao W, Wen W, Chen X, Ma Z, Yu G. Unraveling the effects of sulfamethoxazole on the composition of gut microbiota and immune responses in Stichopus variegatus. Front Microbiol 2022; 13:1032873. [DOI: 10.3389/fmicb.2022.1032873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this work was to reveal the changes in gut microbiota composition and immune responses of sea cucumber (Stichopus variegatus) after being affected by different doses of sulfamethoxazole. In this study, the bacterial 16S rRNA of gut microbiota were analyzed by high-throughput sequencing, and the activities of immune enzymes [lysozyme (LZM), phenoloxidase (PO), alkaline phosphatase (AKP), and acid phosphatase (ACP)] in the gut of S. variegatus were determined. The results showed that the gut microbiota presented a lower richness in the antibiotic treatment groups compared with the control group, and there were significant differences among the dominant bacteria of different concentration treatments. At the genus level, the abundance of Escherichia, Exiguobacterium, Acinetobacter, Pseudomonas, and Thalassotalea were significantly decreased in the 3 mg/L treatment group, while Vibrio was significantly increased. Furthermore, the 6 mg/L treatment group had less effect on these intestinal dominant bacteria, especially Vibrio. The changes in relative abundance of Vibrio at the species level indicated that lower concentrations of sulfamethoxazole could enhance the enrichment of Vibrio mediterranei and Vibrio fortis in S. variegatus more than higher concentrations of sulfamethoxazole. Meanwhile, the 3 mg/L treatment group significantly increased the activities of PO, AKP, and ACP, and decreased the activity of LZM. These results suggested that lower doses of sulfamethoxazole have a greater effect on the gut microbiota composition and immune responses in S. variegatus and may increase the risk of host infection.
Collapse
|
9
|
Qiu Y, Li C, Dong H, Yuan H, Ye S, Huang X, Zhang X, Wang Q. Analysis of key fungi and their effect on the edible quality of HongJun tofu, a Chinese fermented okara food. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Ma D, Li Y, Chen C, Fan S, Zhou Y, Deng F, Zhao L. Microbial succession and its correlation with the dynamics of volatile compounds involved in fermented minced peppers. Front Nutr 2022; 9:1041608. [PMID: 36337633 PMCID: PMC9630939 DOI: 10.3389/fnut.2022.1041608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 06/09/2025] Open
Abstract
Fermented minced peppers are a traditional fermented food that has a unique flavor due to various microbial communities involved in fermentation. Understanding the changes in microbial communities and volatile components of fermented minced peppers is particularly important to unveil the formation of unique flavor of fermented peppers. In this study, the microbial communities and volatile compounds in fermented minced pepper was analyzed by high-throughput sequencing and GC-MS, as well as their underlying correlations were also established. Results indicated that 17 genera were identified as dominant microorganisms in the fermentation of minced pepper, accompanied by the detection of 64 volatile compounds. Further hierarchical clustering analysis (HCA) displayed that dynamic change of volatile metabolites were involved in the fermentation process, where alkane volatile components were mainly generated in the early stage (3-5 days), and alcohols volatile components were in the middle stage (7-17 days), while ester volatile components were mainly produced in both the early stage (3-5 days) and last stage (17-20 days). Bidirectional orthogonal partial least squares (O2PLS) analysis revealed that 11 genera were core functional microorganisms of fermented minced pepper. Cladosporium and Hansenpora were significantly correlated with the formation of 9 and 6 volatiles, respectively. These findings provide new insights into aroma profile variation of fermented minced peppers and underlying mechanism of characteristic aroma formation during fermentation.
Collapse
Affiliation(s)
- Ding Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yong Li
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | | | - Shichao Fan
- Junjie Food Technology Co., Ltd., Shaoyang, China
| | - Yi Zhou
- Lameizi Foodstuff Co., Ltd., Yiyang, China
| | - Fangming Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lingyan Zhao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|