1
|
Hamim NA, Saari N, Wan Ibadullah WZ, Mohamed AMD, Anwar F, Hasan MY, Abdul Rahim MZ, Abdul Rahman MS, Karim R. Optimization of extraction for efficient recovery of kenaf seed protein isolates: evaluation of physicochemical and techno-functional characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2032-2047. [PMID: 39470133 DOI: 10.1002/jsfa.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Kenaf seeds are a rich source of protein; however, finding the best extraction method is crucial to obtaining high-quality protein from these underutilized seeds. This research devised an optimized extraction process for best recovery of kenaf seeds protein using response surface methodology. The key parameters affecting the yield and protein content were optimized, including extraction pH (2-11), seed:water ratio (5:1-50:1), temperature (30-90 °C), and duration (20-360 min). The physicochemical and techno-functional properties of kenaf seed protein isolates (KSPIs) were examined. RESULTS A maximum protein yield of 12.05 g/100 g with purity level 91.94 g/100 g was obtained using an optimized extraction with pH 11.0, seed:water ratio 50:1, 360 min duration, and temperature 50 °C. The oil and water retention capacities of KSPI were 1.14 mL g-1 and 1.37 mL g-1 respectively. After 30 min at pH 7, KSPIs demonstrated remarkable emulsion capacity (83.12%) and stability (75.63%), along with high foaming capacity (106%) and stability (18.3%). As per high-performance liquid chromatography analysis, arginine, glutamic acid, leucine, phenylalanine, and lysine were the most abundant amino acids detected in KPSIs. The KSPIs' globular protein structure was successfully verified using analytical approaches, including Fourier transform infrared spectroscopy, protein fraction ratios, and differential scanning calorimetry. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed that KPSI has a molecular weight distribution ranging from 10 kDa to 50 kDa. CONCLUSION The results of this study support the application of the proposed response-surface-methodology-optimized extraction method for efficient recovery of high-quality kenaf seed proteins that meet the necessary physicochemical and techno-functional requirements. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nur Aqilah Hamim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Section of Food Engineering Technology, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Malaysia
- Inkubator Teknologi Makanan MARA, Taman Perindustrian Kepong, Kuala Lumpur, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Manan Dos Mohamed
- Section of Food Engineering Technology, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
- Faculty of Health Sciences, Shinawatra University, Pathum Thani, Thailand
| | - Muhamad Yusuf Hasan
- Section of Food Engineering Technology, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Malaysia
- Inkubator Teknologi Makanan MARA, Taman Perindustrian Kepong, Kuala Lumpur, Malaysia
| | - Mohd Zulkhairi Abdul Rahim
- Section of Food Engineering Technology, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Malaysia
- Inkubator Teknologi Makanan MARA, Taman Perindustrian Kepong, Kuala Lumpur, Malaysia
| | - Muhammad Sharir Abdul Rahman
- Section of Food Engineering Technology, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Malaysia
- Inkubator Teknologi Makanan MARA, Taman Perindustrian Kepong, Kuala Lumpur, Malaysia
| | - Roselina Karim
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Miao J, Yu C, Cheng X, Qiu J, Liu S. Response Surface Methodology (RSM) for Optimizing Protein Extraction from Housefly ( Musca domestica) Larvae Fed with Toad and Its Structural Characterization. Molecules 2024; 29:2595. [PMID: 38893470 PMCID: PMC11173605 DOI: 10.3390/molecules29112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
With the global population on the rise, an escalating interest exists in environmentally sustainable and friendly protein sources. Insects have emerged as multifaceted resources, viewed not only as potential food items, but also as sources of traditional medicines and proteins. This study utilized response surface methodology (RSM) to ascertain the optimal extraction conditions for proteins from Musca domestica used in toad feeding, denoted as MDPs-T. The yield of MDPs-T was elevated to 18.3% ± 0.2% under these optimized conditions. Subsequently, the particle size, ζ-potentials, and structures of MDPs-T were analyzed and compared with the proteins derived from Musca domestica fed on a normal diet (MDPs-ND). This comparative analysis utilized a range of advanced techniques, involving UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-performance gel permeation chromatography (HPGPC), and scanning electron microscopy (SEM). The outcomes have revealed a marginal disparity in the physical and chemical properties between MDPs-T and MDPs-ND. Derosination led to a reduction in the particle size of the MDPs by 10.98% to 62.81%. MDPs-T exhibited a higher proportion of low-molecular-weight components relative to MDPs-ND. Additionally, in a comparative analysis of amino acids, MDPs-T displayed a greater abundance of essential and total amino acids relative to MDPs-ND. Consequently, MDPs-T holds potential as a valuable food supplement for human consumption or as a nutrient-rich feed supplement for animals.
Collapse
Affiliation(s)
- Jingnan Miao
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| | - Chenglu Yu
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| | - Xianhe Cheng
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Shumin Liu
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| |
Collapse
|
3
|
Sudha S, Mary Saral A. Studies on phytochemical, mineral content, in vitro anti-urolithiatic and anti-diabetic activities of horse gram flour extracts and its biosynthesized Ag nanoparticles. Heliyon 2023; 9:e16572. [PMID: 37274714 PMCID: PMC10238715 DOI: 10.1016/j.heliyon.2023.e16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
The current study aims to examine the use of horse gram flour and its extracts as a low-cost source of mineral content with anti-urolithiatic, anti-diabetic properties and to compare the biological activities with its biosynthesized AgNPs. The secondary metabolites and the macro and micronutrients present in the selected herbal product, reinforces the utility of the horse gram as a promising herbal. Present investigation reveals that the biomass chosen for the study as a cheap natural source with valuable mineral content of calcium (43.06 mg/L), followed by potassium (13.78 mg/L) and sodium (6.94 mg/L). The grain's water extracts found to contain carbohydrate as dominating component with the value of (65.10 ± 0.95 mg g-1 equivalent). Whereas both water and ethanol extract contain TPC (phenol) viz; 60.13 ± 2.45 mg g-1, 68.24 ± 1.33 mg g-1, TTC (terpenoids)53.21 ± 1.4 mg g-1,51.27 ± 2.65 mg g-1, followed by TSC (sterol)as 45.58 ± 1.7 mg g-1, 57.27 ± 1.65 mg g-1 in moderate amounts respectively. The aqueous extract of Horse gram was used for the synthesis the AgNPs through a straightforward green approach and characterized by FESEM, TEM, zeta potential, X-ray diffraction, UV spectroscopy and particle size measurement. These studies demonstrate the production of AgNPs with an average particle size of 30 nm-60 nm. Investigation on anti-urolithiatic property with aqueous extract, (HGW), ethanol extract (HGE) and its biosynthesized Ag nanoparticles (HG-Ag) reveal that, among the three samples chosen, the biosynthesized Ag nanoparticles possess the best inhibiting activity. The disintegration of crystals in gel medium further validated the extracts and Ag nanoparticles crystal growth inhibitory activity, at concentrations of 2% for extracts and 200 μg/ml for AgNPs. Further, it is also found that the HG-Ag nanoparticle exhibit good anti-diabetic activity (75.36%) than the other two extracts (HGW Extract-67.18% & HGE Extract-44.29%). Thus, the seed flour extracts and its AgNps demonstrated to be a promising natural herbal product with potential mineral content, antidiabetic and anti-urolithiatic activities which could be a used as a value-added product in the dietary formulations.
Collapse
|
4
|
Osama K, Siddiqui MH, Makroo HA, Younis K. Development of cookies enriched with fiber and calcium-rich Neolamarckia cadamba fruit powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Khursheed N, Osama K, Eldesoky GE, Wabaidur SM, Islam MA, Younis K. Ultrasound‐Assisted
Protein Extraction from Mosambi Peel Support Vector Regression and Genetic Algorithm Based Modelling and Optimization. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nazia Khursheed
- Department of Bioengineering Integral University Lucknow India
| | - Khwaja Osama
- Department of Bioengineering Integral University Lucknow India
| | - Gaber E. Eldesoky
- Chemistry Department, College of Science King Saud University Riyadh Saudi Arabia
| | | | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine, and Health University of Manchester Manchester United Kingdom
| | - Kaiser Younis
- Department of Bioengineering Integral University Lucknow India
| |
Collapse
|