1
|
Rathi R, Sandhu V, Singh I. Exploring the potential of 3D-printed texture-modified diets for the management of dysphagia. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:599-611. [PMID: 40109684 PMCID: PMC11914647 DOI: 10.1007/s13197-025-06213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 03/22/2025]
Abstract
Dysphagia is a swallowing disorder characterized by mild to severe pain during food ingestion. Patients with dysphagia require special care and food that meet the patient's requirements of nutrition and ease of swallowing which can be achieved by texture-modified diets. Texture modification is important for improving swallow safety and control and preventing aspiration, pneumonia, and choking. 3D printing is the leading technology in today's era and is widely used for the texture modification of food for patients with swallowing disorders. 3D printing is fast, reliable, and customizable and has the potential to fabricate unappealing and tasteless food into different colours, textures, and shapes. Our discussion brings to review the present and future of 3D printing in preparing texture-modified diets for dysphagia. The challenges associated with dysphagia diets that can be overcome by 3D printing have also been discussed. The review also focuses on the IDDSI framework for determining the suitability of food for dysphagic patients. The key factors such as the material used, and viscosity have been discussed along with various pre-existing literature. The key challenges with the food industry and future research areas have also been discussed.
Collapse
Affiliation(s)
- Ritu Rathi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab India
| | - Varneet Sandhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab India
| |
Collapse
|
2
|
Mendoza-Bautista KJ, Flores-Jimenez MS, Vázquez Tejeda Serrano LD, Trujillo de Santiago G, Alvarez MM, Molina A, Alfaro-Ponce M, Chairez I. Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces. MICROMACHINES 2025; 16:264. [PMID: 40141876 PMCID: PMC11944356 DOI: 10.3390/mi16030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
The necessity of developing more realistic artificial food requires the aggregation of different biomaterials in an ordered and controlled manner. One of the most advanced methods for this is food printers reproducing additive manufacturing processes. This study presents a fully automatized 3D food printer leveraging collaborative Cartesian and multi-ink robotic systems to create complex food structures, with materials with different rheological settings using a screw conveyor configuration with controlled motion velocity. The developed food printer followed a formal mechatronic design strategy with fully functional instrumentation and automation systems. An adaptive controller was developed and implemented to regulate the coordinated operation of booth robotic devices, which are enforced by the G-code corresponding to the target food structure, leading to the necessary resolution. This device was tested with different commercial food inks to develop structures with complex shapes. The workability of the developed printer was confirmed by examining the food samples obtained using multiple materials, including creating different three-dimensional structures of a single complex food ink and creating simple structures made of different food inks with diverse structures that could yield a synthetic tissue that reproduces synthetic meat.
Collapse
Affiliation(s)
- Karen Jazmin Mendoza-Bautista
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45201, Mexico; (K.J.M.-B.); (M.S.F.-J.)
| | - Mariana S. Flores-Jimenez
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45201, Mexico; (K.J.M.-B.); (M.S.F.-J.)
| | - Laisha Daniela Vázquez Tejeda Serrano
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64700, Mexico; (L.D.V.T.S.); (G.T.d.S.); (M.M.A.)
- Forma Ciencia y Tecnologia, Forma Foods, Monterrey 64740, Mexico
| | - Grissel Trujillo de Santiago
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64700, Mexico; (L.D.V.T.S.); (G.T.d.S.); (M.M.A.)
- Forma Ciencia y Tecnologia, Forma Foods, Monterrey 64740, Mexico
| | - Mario Moises Alvarez
- School of Engineering and Sciences, Tecnológico de Monterrey, Campus Monterrey, Monterrey 64700, Mexico; (L.D.V.T.S.); (G.T.d.S.); (M.M.A.)
- Forma Ciencia y Tecnologia, Forma Foods, Monterrey 64740, Mexico
| | - Arturo Molina
- Instituto Tecnológico de Tláhuac III, Tecnológico Nacional de México, Tlahuac 13278, Mexico;
| | - Mariel Alfaro-Ponce
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Campus CDMX, Ciudad de México 14380, Mexico;
| | - Isaac Chairez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Campus Guadalajara, Zapopan 45201, Mexico
| |
Collapse
|
3
|
Thorakkattu P, Awasti N, Sajith Babu K, Khanashyam AC, Deliephan A, Shah K, Singh P, Pandiselvam R, Nirmal NP. 3D printing: trends and approaches toward achieving long-term sustainability in the food industry. Crit Rev Biotechnol 2025; 45:48-68. [PMID: 38797671 DOI: 10.1080/07388551.2024.2344577] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 05/29/2024]
Abstract
Global food security has recently been under serious threat from the rapid rise in the world's population, the problems brought on by climate change, and the appearance of new pandemics. As a result, the need for novel and innovative solutions to solve the existing problems and improve food sustainability has become crucial. 3D printing is expected to play a significant role in providing tangible contributions to the food industry in achieving sustainable development goals. The 3D food printing holds the potential to produce highly customized food in terms of shape, texture, flavor, structure and nutritional value and enable us to create new unique formulations and edible alternatives. The problem of whether the cost of the printed meal and 3D printing itself can be sustainably produced is becoming more and more important due to global concerns. This review intends to provide a comprehensive overview of 3D printed foods with an overview of the current printing methodologies, illustrating the technology's influencing factors, and its applications in personalized nutrition, packaging, value addition, and valorization aspects to fully integrate sustainability concerns thus exploring the potential of 3D food printing.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, KS State University, Manhattan, USA
| | | | | | | | | | | | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Chaumuhan, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | | |
Collapse
|
4
|
Arshad R, Saqib A, Sharif HR, Liaqat A, Xu B. Recent advances in 3D food printing: Therapeutic implications, opportunities, potential applications, and challenges in the food industry. Food Res Int 2025; 203:115791. [PMID: 40022323 DOI: 10.1016/j.foodres.2025.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
3D food printing (3DFP) offers a transformative approach in the food industry, diverging from traditional manufacturing techniques. The integration of food science and nutrition with 3DFP is pioneering personalized, eco-friendly, and nutrient-rich food options, overcoming limitations of traditional manufacturing methods. For the past 10 years, we have been strongly focused on creating innovative, efficient, and functional food products while allowing customization of food based on preferences for nutrition, flavor, texture, mouthfeel, and appearance. Beyond customization, 3DFP demonstrates promise in addressing pressing global challenges including food security, famine, and malnutrition by facilitating the production of fortified, shelf-stable food products suitable for resource- constrained environments. This comprehensive review explores the intersection of 3DFP with food constituents, emphasizing its potential in enhancing customization, sustainability, food safety, and shelf-life extension. Additionally, it discusses the therapeutic potential of 3D printed foods for various diseases, including gastrointestinal disorders, cancer, diabetes, neurodegenerative disorders, and food allergies. Moreover, the review examines potential food applications of 3DFP, such as in space food, food packaging, dairy industry, fruit and vegetable processing, and cereal-based foods. The review also addresses key challenges associated with 3DFP and underscores the importance of four-dimensional food printing (4DFP).
Collapse
Affiliation(s)
- Rizwan Arshad
- Department of Allied Health Sciences, The University of Chenab, Gujrat, Pakistan
| | - Aroosha Saqib
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Hafiz Rizwan Sharif
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Atiqa Liaqat
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
5
|
Niu R, Zhao R, Hu H, Yu X, Huang Z, Cheng H, Yin J, Zhou J, Xu E, Liu D. Co-encapsulation of hydrophilic and hydrophobic bioactives stabilized in nanostarch-assisted emulsion for inner core gel of coaxial 3D printing. Carbohydr Polym 2024; 343:122499. [PMID: 39174108 DOI: 10.1016/j.carbpol.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/24/2024]
Abstract
3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.
Collapse
Affiliation(s)
- Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haohao Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xinyao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhaojing Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jun Yin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jianwei Zhou
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
6
|
Prasad S, Athokpam M, Purohit SR. Recent advances in gellan gum production and modification for enhanced applicability in food printing and bioactive delivery applications. Carbohydr Res 2024; 543:109225. [PMID: 39096563 DOI: 10.1016/j.carres.2024.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The importance of Gellan gum has been increasing gradually and its unique characteristics are suitable for various advanced food technologies. This review outlines recent developments in gellan gum production, modification, and newer applications focusing on food printing and bioactive delivery applications, in the last three years. The yield and production condition of gellan gum is a major factor that affects the cost and its applications. Moreover, modified Gellan gum has been shown to have superior characteristics and functionality as compared to native one. The viscosifying, thermosensitive, gelling etc. characteristics of gellan gum makes it an crucial ingredient in case of preparation of 3D printing ink. Further, gellan gum is also found to be important wall material in case of bioactive delivery application through encapsulation. Optimized methods of production, sustainable feedstock, and stress conditions are critical for the desired functionality and yield of the Gellan gum.
Collapse
Affiliation(s)
- Sanstuti Prasad
- Food Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Manisana Athokpam
- Food Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Soumya Ranjan Purohit
- Food Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India.
| |
Collapse
|
7
|
Ahmadzadeh S, Ubeyitogullari A. Lutein encapsulation into dual-layered starch/zein gels using 3D food printing: Improved storage stability and in vitro bioaccessibility. Int J Biol Macromol 2024; 266:131305. [PMID: 38569990 DOI: 10.1016/j.ijbiomac.2024.131305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
The ability of 3D printing to encapsulate, protect, and enhance lutein bioaccessibility was investigated under various printing conditions. A spiral-cube-shaped geometry was used to investigate the effects of printing parameters, namely zein concentration (Z; 20, 40, and 60 %) and printing speed (PS; 4, 8, 14, and 20 mm/s). Coaxial extrusion 3D printing was used with lutein-loaded zein as the internal flow material, and corn starch paste as the external flow material. The viscosities of the inks, microstructural properties, storage stability, and bioaccessibility of encapsulated lutein were determined. The sample printed with a zein concentration of 40 % at a printing speed of 14 mm/s (Z-40/PS-14) exhibited the best shape integrity. When lutein was entrapped in starch/zein gels (Z-40/PS-14), only 39 % of lutein degraded after 21 days at 25 °C, whereas 78 % degraded at the same time when crude lutein was studied. Similar improvements were also observed after storing at 50 °C for 21 days. Furthermore, after simulated digestion, the bioaccessibility of encapsulated lutein (9.8 %) was substantially higher than that of crude lutein (1.5 %). As a result, the developed delivery system using 3D printing could be an effective strategy for enhancing the chemical stability and bioaccessibility of bioactive compounds (BCs).
Collapse
Affiliation(s)
- Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA; Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
8
|
Ahmadzadeh S, Lenie MDR, Mirmahdi RS, Ubeyitogullari A. Designing future foods: Harnessing 3D food printing technology to encapsulate bioactive compounds. Crit Rev Food Sci Nutr 2023; 65:303-319. [PMID: 37882785 DOI: 10.1080/10408398.2023.2273446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Bioactive compounds (BCs) provide numerous health benefits by interacting with one or more components of living tissues and systems. However, despite their potential health benefits, most of the BCs have low bioaccessibility and bioavailability, hindering their potential health-promoting activities. The conventional encapsulation techniques are time-consuming and have major limitations in their food applications, including the use of non-food grade chemicals, undesired sensory attributes, and storage stability issues. A cutting-edge, new technique based on 3D printing can assist in resolving the problems associated with conventional encapsulation technologies. 3D food printing can help protect BCs by incorporating them precisely into three-dimensional matrices, which can provide (i) protection during storage, (ii) enhanced bioavailability, and (iii) effective delivery and controlled release of BCs. Recently, various 3D printing techniques and inks have been investigated in order to create delivery systems with different compositions and geometries, as well as diverse release patterns. This review emphasizes the advances in 3D printing-based encapsulation approaches, leading to enhanced delivery systems and customized food formulations.
Collapse
Affiliation(s)
- Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
9
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
10
|
Ahmadzadeh S, Ubeyitogullari A. Generation of porous starch beads via a 3D food printer: The effects of amylose content and drying technique. Carbohydr Polym 2022; 301:120296. [DOI: 10.1016/j.carbpol.2022.120296] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|