1
|
Esam RM, Hafez RS, Khafaga NIM, Ahmed LI, Soliman TN, Fahim KM. Novel utilization of micro-encapsulated Lactobacillus acidophilus and bacterial /yeast combination enhanced the AFM 1 reduction in spiked yoghurt. Int J Food Microbiol 2025; 436:111205. [PMID: 40239292 DOI: 10.1016/j.ijfoodmicro.2025.111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Aflatoxin M1 (AFM1) is a significant public health hazard threatening dairy food safety and the dairy industry. Therefore, the present study evaluated the effectiveness of five probiotic (viable) and parabiotic (non-viable: heat and acid-treated) strains (Bifidobacterium bifidum, Lactobacillus acidophilus, Bacillus subtilis, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae) in reducing AFM1 in yoghurt over two weeks. It also explored the ability of the micro-encapsulated L. acidophilus and the viable and non-viable new bacterial/yeast combinations (L. acidophilus- B. bifidum- S. cerevisiae) as promising and new strategies to eliminate and control AFM1 in the dairy plant. All the studied strains reduced AFM1 efficiently in pro and parabiotic yoghurt compared to the control yoghurt (without fortification) (P < 0.05), with the highest efficacy in L. acidophilus. Furthermore, the bacterial/yeast combination scored a better AFM1 reduction percentage than the single treatments, with a binding percentage of 90 % in acid-treated co-culture. However, the innovative application of the encapsulated L. acidophilus with chitosan-CaCl2-alginate (Alg/CaCl2/CH) and chitosan‑sodium tripolyphosphate (CH/TPP) was considered the best treatment as they achieved fast and significant AFM1 reduction percentages of 68 and 81 %, respectively, from the first day of storage. In conclusion, these findings provided a safe and effective solution for AFM1 control in the dairy industry. Additionally, the effective reduction percentages obtained by parabiotics open the door for extensive application in non-fermented dairy foods.
Collapse
Affiliation(s)
| | - Ragaa Shehata Hafez
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Lamiaa Ibrahim Ahmed
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Tarek Nour Soliman
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Karima Mogahed Fahim
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| |
Collapse
|
2
|
Huda KU, Ahmad A, Mushtaq Z, Raza MA, Moreno A, Saeed F, Afzaal M. Development of ultrasonic-assisted gelatin-based biodegradable packaging film incorporated with turmeric extract for the shelf-life extension of chicken minced meat. Int J Biol Macromol 2025; 306:141558. [PMID: 40043995 DOI: 10.1016/j.ijbiomac.2025.141558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
This study aims to develop the gelatin-based packaging film incorporated with turmeric extract to enhance the shelf life of a minced chicken. The films were subjected to functional, morphological and physicochemical characterization. The results showed that ethanolic extract of turmeric has a higher amount of turmerone and ar-turmerone along with some other bioactive compounds. The antioxidant activity of turmeric extract (TE) was (TPC 15 ± 0.9 mg GAE/g, DPPH 87 ± 7.5 %, FRAP 4.8 ± 0.05 mmol Trolox eq/100 g, ABTS 714.48 ± 22 %). FTIR spectra showed slight changes in their amide regions with the addition of TE. XRD indicated that characteristic peak 2θ ≈ 13° in the control film and T1 while it disappeared in T2. SEM micrographs showed that the control film and T1 have uniformity, while T2 showed some irregularities. UV transmission was decreased with the addition of TE in the films as compared to control films. The physical tests of the films showed that film solubility (16 ± 2.1-26 ± 3), moisture content (10 ± 1-16.1 ± 2.2), tensile strength (8.1 ± 1.3-8.8 ± 0.9) and WVP (8.4 ± 1.5-10 ± 1.7) decreased by increasing the concentration of turmeric extract while thickness (0.038 ± 0.002-0.045 ± 0.003) and EAB (68 ± 7-71.9 ± 8) increased. Meanwhile, the films effectively inhibited the lipid oxidation and growth of microbes to extend the shelf-life of meat.
Collapse
Affiliation(s)
- Kashaf Ul Huda
- Department of Food Science, Government College University Faisalabad, Pakistan
| | - Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Pakistan
| | | | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Pakistan.
| |
Collapse
|
3
|
Mussa NJ, Thongkam P, Wongnen C, Panpipat W, Kitipipit W, Cheong LZ, Chaijan M. Exploring the potential of Mon-Pu (Glochidion wallichianum) leaf extract as a natural antioxidant for Ligor chicken meat gel: Impact on gelation functionality and oxidative stability. Poult Sci 2025; 104:104839. [PMID: 39854964 PMCID: PMC11803850 DOI: 10.1016/j.psj.2025.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluated the antioxidant potential of Mon-Pu (Glochidion wallichianum Mull. Arg.) leaf extract (MPLE) as a natural antioxidant in Ligor chicken meat gels. The investigation focused on the impacts on gelation functionality and oxidative stability during refrigerated storage. MPLE with 21.16 mg/100 g of extractable phenolic compounds and antioxidant potency (DPPH• scavenging activity, ABTS•+scavenging activity, and ferric reducing antioxidant power (FRAP) at 2.79, 21.13, and 3.20 mmole TE/g, respectively) was applied during thermal-induced gel preparation at different concentrations (0 %, 0.01 %, 0.1 %, and 1 %) in comparison with 1 % gallic acid, a reported key phenolic compound in MPLE, based on the total weight of the meat sample. MPLE at concentrations of 0.1-1 % effectively reduced lipid oxidation in Ligor meat gel during storage. Additionally, MPLE at 0.1 % inhibited protein oxidation, preserving the physical and textural qualities of meat gels during processing and refrigerated storage. Notably, MPLE at 0.1 % proved to be the most beneficial, retaining gel properties, enhancing water-holding capacity, stabilizing color, and reducing oxidative degradation. These findings indicate that MPLE, at an optimal concentration of 0.1 %, has significant potential as a natural preservative, providing a safer and more effective alternative to synthetic additives for maintaining gel properties and preserving oxidative stability of chicken meat products, particularly Ligor chicken meat gel.
Collapse
Affiliation(s)
- Ngassa J Mussa
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Porntip Thongkam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chantira Wongnen
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| | - Warangkana Kitipipit
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem, University of Melbourne, Parkville, VIC 3010, Australia
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Abed S, Nowruzi B, Anvar SAA. Production of Oncorhynchus mykiss biosensor based on polyvinyl alcohol/chitosan nanocomposite using phycocyanin during refrigerated storage. Sci Rep 2025; 15:703. [PMID: 39753812 PMCID: PMC11698946 DOI: 10.1038/s41598-025-85284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Smart packaging, also known as intelligent packaging, is responsive to external stimuli, moisture, light, oxygen, heat, pH, and bacterial growth. In this study, polyvinyl alcohol/nanochitosan/phycocyanin nanocomposite (PVA/NCH/PC-NC) for fish fillets of Oncorhynchus mykiss rainbow trout coating was prepared. Five treatments were prepared over a period of 14 days (0, 1, 7 and 14 days) under treatments of T1: fish coated with PVA/NCH-NC without PC; T2, T3, T4 and T5 fish coated with PVA/NCH/PC-NC (0.5, 1, 1.5 and 2% PC respectively). Moreover, the results showed that higher concentrations of PC in PVA/NCH polymer matrix resulted in a net-like morphology on the film's surface. Also, after 21 days of storage, the T4 treatment had the lowest levels of mesophilic, psychrophilic, and Enterobacteriaceae bacteria (8.17 ± 0.02, 7.90 ± 0.04, and 60.67 ± 0.02 log cfu/g, respectively). Additionally, it was seen that PVA/NCH/PC-NC improved the Sensory evaluation of fish fillet samples during 14 days of storage (p < 0.05). Overall, the results showed that the prepared PVA/NCH/PC-NC (2% PC) film function as an intelligent packaging solution in food preservation and freshness monitoring applications of Oncorhynchus mykiss fillet in terms of mechanical, microbial and sensorial evaluation.
Collapse
Affiliation(s)
- Sima Abed
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bahareh Nowruzi
- Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Zhang Y, Feng X, Shi D, Ibrahim SA, Huang W, Liu Y. Properties of modified chitosan-based films and coatings and their application in the preservation of edible mushrooms: A review. Int J Biol Macromol 2024; 270:132265. [PMID: 38734346 DOI: 10.1016/j.ijbiomac.2024.132265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Edible mushrooms are prone to deteriorate during storage. A Single chitosan film or coating has limitations in preservation. Therefore, this article focused on the improvement of modified chitosan-based films and coatings on properties related to storage quality of edible mushrooms (e.g.: safety, barrier, mechanical, antioxidant and antibacterial properties). Besides, the application of chitosan-based materials in the preservation of mushrooms was also discussed. The modified chitosan film and coating can slow down the respiration of mushrooms, inhibit the growth of microorganisms, protect antioxidant compositions, and regulate the activity of related enzymes, thus improving the quality and prolonging the shelf life of mushrooms. Meanwhile, the added ingredients improve the water and gas barrier properties of chitosan through volume and group occupation, and reduce the light transmittance of chitosan through light transmission, scattering and absorption. Essential oils and polyphenolic compounds had a better enhancement of antioxidant and antimicrobial properties of chitosan.
Collapse
Affiliation(s)
- Yingqi Zhang
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, China; Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, United States
| | - Defang Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, China; Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Salam A Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Huang X, Du L, Li Z, Yang Z, Xue J, Shi J, Tingting S, Zhai X, Zhang J, Capanoglu E, Zhang N, Sun W, Zou X. Lactobacillus bulgaricus-loaded and chia mucilage-rich gum arabic/pullulan nanofiber film: An effective antibacterial film for the preservation of fresh beef. Int J Biol Macromol 2024; 266:131000. [PMID: 38521333 DOI: 10.1016/j.ijbiomac.2024.131000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.
Collapse
Affiliation(s)
- Xiaowei Huang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
| | - Liuzi Du
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhihua Li
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Zhikun Yang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jin Xue
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jiyong Shi
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
| | - Shen Tingting
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Junjun Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Esra Capanoglu
- Istanbul Technical University (ITU), Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Maslak, Istanbul, Turkey
| | - Ning Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Wei Sun
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China.
| |
Collapse
|
7
|
Li M, Yang Z, Zhai X, Li Z, Huang X, Shi J, Zou X, Lv G. Incorporation of Lactococcus lactis and Chia Mucilage for Improving the Physical and Biological Properties of Gelatin-Based Coating: Application for Strawberry Preservation. Foods 2024; 13:1102. [PMID: 38611406 PMCID: PMC11011328 DOI: 10.3390/foods13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, a gelatin/chia mucilage (GN/CM) composite coating material doped with Lactococcus lactis (LS) was developed for strawberry preservation applications. The results of the scanning electron microscope and Fourier transform infrared spectroscopy stated that the enhanced molecular interaction between the CM and GN matrix strengthened the density and compactness of the GN film. Antifungal results indicated that the addition of LS significantly (p < 0.05) improved the ability of the GN coating to inhibit the growth of Botrytis cinerea (inhibition percentage = 62.0 ± 4.6%). Adding CM significantly (p < 0.05) decreased the water vapour permeability and oxygen permeability of the GN coating by 32.7 ± 4.0% and 15.76 ± 1.89%, respectively. In addition, the incorporated CM also significantly (p < 0.05) improved the LS viability and elongation at break of the film by 13.11 ± 2.05% and 42.58 ± 1.21%, respectively. The GN/CM/LS composite coating material also exhibited an excellent washability. The results of this study indicated that the developed GN/CM/LS coating could be used as a novel active material for strawberry preservation.
Collapse
Affiliation(s)
- Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaobo Zou
- Institute of Future Food Technology, JITRI, Yixing 214200, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| |
Collapse
|
8
|
Koirala P, Bhandari Y, Khadka A, Kumar SR, Nirmal NP. Nanochitosan from crustacean and mollusk byproduct: Extraction, characterization, and applications in the food industry. Int J Biol Macromol 2024; 262:130008. [PMID: 38331073 DOI: 10.1016/j.ijbiomac.2024.130008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Crustaceans and mollusks are widely consumed around the world due to their delicacy and nutritious value. During the processing, only 30-40 % of these shellfish are considered edible, while 70-60 % of portions are thrown away as waste or byproduct. These byproducts harbor valuable constituents, notably chitin. This chitin can be extracted from shellfish byproducts through chemical, microbial, enzymatic, and green technologies. However, chitin is insoluble in water and most of the organic solvents, hampering its wide application. Hence, chitin is de-acetylated into chitosan, which possesses various functional applications. Recently, nanotechnology has proven to improve the surface area and numerous functional properties of metals and molecules. Further, the nanotechnology principle can be extended to nanochitosan formation. Therefore, this review article centers on crustaceans and mollusks byproduct utilization for chitosan, its nano-formation, and their food industry applications. The extensive discussion has been focused on nanochitosan formation, characterization, and active site modification. Lastly, nanochitosan applications in various food industries, including biodegradable food packaging, fat replacer, bioactive compound carrier, and antimicrobial agent have been reported.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Yash Bhandari
- Department of Nutrition and Dietetics, Central Campus of Technology, Tribhuvan University, Nepal
| | - Abhishek Khadka
- Rural Reconstruction Nepal, 288 Gairidhara Road 2, Kathmandu Metropolitan City, Bagmati, Nepal
| | - Simmi Ranjan Kumar
- Department of Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
9
|
Xu Y, Wu Z, Li A, Chen N, Rao J, Zeng Q. Nanocellulose Composite Films in Food Packaging Materials: A Review. Polymers (Basel) 2024; 16:423. [PMID: 38337312 DOI: 10.3390/polym16030423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Owing to the environmental pollution caused by petroleum-based packaging materials, there is an imminent need to develop novel food packaging materials. Nanocellulose, which is a one-dimensional structure, has excellent physical and chemical properties, such as renewability, degradability, sound mechanical properties, and good biocompatibility, indicating promising applications in modern industry, particularly in food packaging. This article introduces nanocellulose, followed by its extraction methods and the preparation of relevant composite films. Meanwhile, the performances of nanocellulose composite films in improving the mechanical, barrier (oxygen, water vapor, ultraviolet) and thermal properties of food packaging materials and the development of biodegradable or edible packaging materials in the food industry are elaborated. In addition, the excellent performances of nanocellulose composites for the packaging and preservation of various food categories are outlined. This study provides a theoretical framework for the development and utilization of nanocellulose composite films in the food packaging industry.
Collapse
Affiliation(s)
- Yanting Xu
- Postgraduate Department, Minjiang University, No. 200, Xiyuangong Road, Fuzhou 350108, China
| | - Zhenzeng Wu
- The College of Ecology and Resource Engineering, Wuyi University, No. 16, Wuyi Avenue, Wuyishan 354300, China
| | - Ao Li
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Nairong Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Jiuping Rao
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| | - Qinzhi Zeng
- College of Material Engineering, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China
| |
Collapse
|
10
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
11
|
Yang H, Wang S, Yang L, Liu H. Preparations, application of polysaccharide-protein nanoparticles and their assembly at the oil-water interface. Food Sci Biotechnol 2024; 33:13-22. [PMID: 38186629 PMCID: PMC10767157 DOI: 10.1007/s10068-023-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 01/09/2024] Open
Abstract
With the development of nanotechnology, nanoparticles have played an important role in pharmaceuticals, foods and materials, in particular, protein/polysaccharide based composite nanoparticles have received attention from researchers for safety and green production. This paper summarized in detail the preparation methods, applications of protein/polysaccharide nanoparticles (PPNPs) in recent years, especially the mechanism of stabilizing the oil-water interface. Currently, the polysaccharides applied are more traditional, such as chitosan, pectin and carboxymethyl cellulose, so there is still a lot of room for the development of raw materials that can be used to prepare PPNPs. Based on this, we also proposed three promising polysaccharides: seaweed polysaccharide, lycium barbarum polysaccharide and lactobacillus exopolysaccharides, describing their characteristics as well as their application prospects, this article can serve as a reference for interested researchers.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - He Liu
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| |
Collapse
|
12
|
Kizilkaya P, Kaya M. The Effect of a Chitosan/TiO 2-Nanoparticle/ Rosmarinic Acid-Based Nanocomposite Coating on the Preservation of Refrigerated Rainbow Trout Fillets ( Oncorhynchus mykiss). Food Sci Anim Resour 2023; 43:1170-1182. [PMID: 37969329 PMCID: PMC10636217 DOI: 10.5851/kosfa.2023.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 11/17/2023] Open
Abstract
The aim of this study was to determine the effect of chitosan (CH)-based nanocomposite coating applications [chitosan+TiO2 (CHT) and chitosan+TiO2+rosmarinic acid (CHTRA)] on changes in quality attributes of rainbow trout fillets during cold storage (4°C). Fish fillets were randomly divided into four groups and subjected to treatments (CH, CHT, CHTRA, and control). After treatments, the groups were packaged under a modified atmosphere (40% CO2+30% O2+30% N2) and stored at 4°C for 18 days. During cold storage, the samples were subjected to physico-chemical and microbiological analyses. During storage, CH, CHT, and CHTRA treatments showed lower aerobic mesophilic and psychrotrophic bacteria counts than the control. However, the differences between coating treatments were not significant. The highest mean pH value was determined in the control group. As the storage time increased, the thiobarbituric acid reactive substances value increased. At the end of the storage period, no significant differences were observed between the treatments, including in the control group. The total volatile basic nitrogen (TVB-N) level in the control group was above 25 mg/100 g on day 15 of storage. However, the TVB-N level in the treatment groups was below 20 mg/100 g on day 18. It was also determined that coating application×storage period interaction had a significant effect on all color parameters (p<0.01). At the end of storage, the highest CIE L* was observed in CHTRA treatment. However, the value of this treatment did not differ from that of the CH treatment.
Collapse
Affiliation(s)
- Pınar Kizilkaya
- Department of Food Technology, Ardahan
Vocational School of Technical Sciences, Ardahan University,
Ardahan 75002, Turkey
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of
Agriculture, Atatürk University, Erzurum 25240,
Turkey
| |
Collapse
|
13
|
Huang YY, Yao QB, Jia XZ, Chen BR, Abdul R, Wang LH, Zeng XA, Liu DM. Characterization and application in yogurt of genipin-crosslinked chitosan microcapsules encapsulating with Lactiplantibacillus plantarum DMDL 9010. Int J Biol Macromol 2023; 248:125871. [PMID: 37473896 DOI: 10.1016/j.ijbiomac.2023.125871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Microcapsules could improve the protection of probiotics in the lyophilization and gastrointestinal digestion process. The purpose of this study was to prepare Lactiplantibacillus plantarum DMDL 9010 (LP9010) microcapsules by cross-linking chitosan with genipin and to determine the encapsulation efficiency, morphological characterization, storage stability and the application of the microcapsules in fermentation. The results showed that the LP9010 microcapsules embedded in 1.00 wt% genipin cross-linked chitosan were in a uniform spherical shape with a smooth surface and satisfying agglomeration. The LP9010 microcapsules demonstrated the reasonable thermal stability and persistence of biological activity in the range of -20 °C to 25 °C. Additionally, yogurt obtained from the ST + LB + ELP9010 strain formulation with the addition of microencapsulated LP9010 had smaller particles, better taste, and better stability compared with the yogurt obtained from other strain formulations. As detected by GC-MS, the yogurt formulated with ST + LB + ELP9010 as a strain retained more flavor substances and the content of flavor substances was greater than that of the yogurt obtained from other strain formulations. Therefore, genipin cross-link chitosan could be a suitable microencapsulated material for producing yogurt fermentation strains.
Collapse
Affiliation(s)
- Yan-Yan Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, Guangdong, China
| | - Qing-Bo Yao
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, Guangdong, China
| | - Xiang-Ze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Bo-Ru Chen
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, Guangdong, China
| | - Rahaman Abdul
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, Guangdong, China
| | - Lang-Hong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, Guangdong, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, College of Food Science and Engineering, Foshan University, Foshan 528225, Guangdong, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
14
|
Prakoso FAH, Indiarto R, Utama GL. Edible Film Casting Techniques and Materials and Their Utilization for Meat-Based Product Packaging. Polymers (Basel) 2023; 15:2800. [PMID: 37447446 DOI: 10.3390/polym15132800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
According to a profusion of academic studies on the use of organic materials or biopolymers as key components, the current trajectory of food packaging techniques is showing a positive inclination. Notably, one such biopolymer that has attracted much attention is edible film. The biopolymers that have been stated as constitutive components are composed of polysaccharides, lipids, proteins, or a combination of these, which work together to reinforce one another's properties and create homogenous mixtures. An edible film provides a clear, thin layer that encases foodstuffs, including their packaging. The production and use of edible film have recently been the focus of much research in the field of food polymers. Extending the shelf life of food goods is the goal of this research. Given their great susceptibility to change brought on by outside forces or pollutants, which may result in oxidative rancidity, the proper storage of nutrient-dense food items, particularly meat products, deserves careful study. Many edible films have been found to contain active ingredients, such antimicrobials or antioxidants, that can successfully prevent the spoiling of meat products, a process that can happen in a short amount of time. Surprisingly, a number of scholarly examinations reveal that edible film may be cooked alongside meat because of its organic makeup. We hope that the use of edible film will lead to a more environmentally responsible method of food packaging than has previously been possible.
Collapse
Affiliation(s)
- Fauzi Atsani Harits Prakoso
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Rossi Indiarto
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
- Centre for Environment and Sustainability Science, Universitas Padjadjaran, Jalan Sekeloa Selatan I No. 1, Bandung 40134, Indonesia
| |
Collapse
|
15
|
Akman PK, Kutlu G, Tornuk F. Development and characterization of a novel sodium alginate based active film supplemented with Lactiplantibacillus plantarum postbiotic. Int J Biol Macromol 2023:125240. [PMID: 37301346 DOI: 10.1016/j.ijbiomac.2023.125240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, sodium alginate based biodegradable films were prepared by the supplementation with postbiotics of Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) W2 strain and the effect of probiotics (probiotic-SA film) and postbiotics (postbiotic-SA film) incorporation on physical, mechanical (tensile strength and elongation at break), barrier (oxygen and water vapor permeability), thermal and antimicrobial properties of the films were investigated. The pH, titratable acidity and brix of the postbiotic was 4.02, 1.24 % and 8.37, respectively while gallic acid, protocatechuic acid, myricetin and catechin were the major phenolic compounds. Mechanical and barrier properties of the alginate-based films were improved by probiotic or postbiotic supplementation while postbiotic showed a more pronounced (P < 0.05) effect. Thermal analysis showed that postbiotics supplementation increased thermal stability of the films. In FTIR spectra, the absorption peaks at 2341 and 2317 cm-1 for probiotic-SA and postbiotic-SA edible films confirmed the incorporation of probiotics/postbiotics of L. plantarum W2 strain. Postbiotic supplemented films showed strong antibacterial activity against gram-positive (L. monocytogenes, S. aureus and B. cereus) and one gram-negative bacterial strain (E. coli O157:H7) while probiotic incorporation did not add an antibacterial effect to the films. SEM images revealed that the supplementation of postbiotics provided a rougher and rigid film surface. Overall, this paper brought a new perspective for development of novel active biodegradable films by incorporation of postbiotics with improved performance.
Collapse
Affiliation(s)
- Perihan Kubra Akman
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Gozde Kutlu
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Fatih Tornuk
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Davutpasa Campus, 34210 Istanbul, Turkey.
| |
Collapse
|
16
|
Moura-Alves M, Esteves A, Ciríaco M, Silva JA, Saraiva C. Antimicrobial and Antioxidant Edible Films and Coatings in the Shelf-Life Improvement of Chicken Meat. Foods 2023; 12:2308. [PMID: 37372519 DOI: 10.3390/foods12122308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Meat deterioration during processing, distribution, and display can compromise the quality and safety of products, causing several undesirable changes and decreasing products' shelf-life, which has a negative impact on the industry and consumers. In recent years, studies have been carried out using decontamination techniques and new packaging methodologies to overcome deterioration problems, increase sustainability, and reduce waste. Edible films and coatings obtained from biopolymers such as polysaccharides, proteins, and lipids, combined with active compounds, can be an alternative approach. This article focused on recent studies that used alternative biodegradable polymeric matrices in conjunction with natural compounds with antioxidant/antimicrobial activity on chicken meat. Its impact on physicochemical, microbiological, and sensory characteristics was evident, as well as the effect on its shelf-life. In general, different combinations of active edible films or coatings had a positive effect on the chicken meat. Different studies reported that the main results were a decrease in microbial growth and pathogen survival, a slowdown in lipid oxidation evolution, and an improvement in sensory quality and shelf-life (an increase from 4 to 12 days).
Collapse
Affiliation(s)
- Márcio Moura-Alves
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - Alexandra Esteves
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - Maria Ciríaco
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - José A Silva
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| | - Cristina Saraiva
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), 5000801 Vila Real, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, 5000801 Vila Real, Portugal
| |
Collapse
|
17
|
Tran TTV, Nguyen NN, Nguyen QD, Nguyen TP, Lien TN. Gelatin/carboxymethyl cellulose edible films: modification of physical properties by different hydrocolloids and application in beef preservation in combination with shallot waste powder. RSC Adv 2023; 13:10005-10014. [PMID: 37006365 PMCID: PMC10052562 DOI: 10.1039/d3ra00430a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, a gelatin/carboxymethyl cellulose (CMC) base formulation was first modified by using different hydrocolloids like oxidized starch (1404), hydroxypropyl starch (1440), locust bean gum, xanthan gum, and guar gum. The properties of modified films were characterized using SEM, FT-IR, XRD and TGA-DSC before selecting of best-modified film for further development with shallot waste powder. SEM images showed that the rough or heterogeneous surface of the base was changed to more even and smooth depending on the hydrocolloids used while FTIR results demonstrated that a new NCO functional group non-existent in the base formulation was found for most of the modified films, implying that the modification led to the formation of this functional group. Compared to other hydrocolloids, the addition of guar gum into the gelatin/CMC base has improved its properties such as better color appearance, higher stability, and less weight loss during thermal degradation, and had minimal effect on the structure of resulting films. Subsequently, the incorporation of spray-dried shallot peel powder into gelatin/CMC/guar gum was conducted to investigate the applicability of edible films in the preservation of raw beef. Antibacterial activity assays revealed that the films can inhibit and kill both Gram-positive and Gram-negative bacteria as well as fungi. It is noteworthy that the addition of 0.5% shallot powder not only effectively decelerated the microbial growth but also destroyed E. coli during 11 days of storage (2.8 log CFU g-1) and the bacterial count was even lower than that of uncoated raw beef on day 0 (3.3 log CFU g-1).
Collapse
Affiliation(s)
- Thi Tuong Vi Tran
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Tran-Phong Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| | - Tuyet-Ngan Lien
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University Ho Chi Minh City 754000 Vietnam
| |
Collapse
|
18
|
Pirveisi N, Ariaii P, Esmaeili M, Ahmadi M. Investigating active packaging based on cellulose nanofibers oxidized by TEMPO method containing hydrolyzed protein obtained from pine tree fruit on the quality of pacific white shrimp (Litopenaeus vannamei) during the storage period. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
19
|
New Bioactive Edible Packing Systems: Synbiotic Edible Films/Coatings as Carries of Probiotics and Prebiotics. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Ghalehjooghi HD, Tajik H, Shahbazi Y. Development and characterization of active packaging nanofiber mats based on gelatin‑sodium alginate containing probiotic microorganisms to improve the shelf-life and safety quality of silver carp fillets. Int J Food Microbiol 2023; 384:109984. [DOI: 10.1016/j.ijfoodmicro.2022.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
21
|
Fei P, Zhang Z, Wu Y, Xiao L, Zhuang Y, Ding N, Huang B. Non-radical synthesis of amide chitosan with p-coumaric acid and caffeic acid and its application in pork preservation. Int J Biol Macromol 2022; 222:1778-1788. [PMID: 36195228 DOI: 10.1016/j.ijbiomac.2022.09.263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
p-Coumaric acid and caffeic acid were grafted onto chitosan through a non-radical synthesis method to improve the properties of chitosan and expand its application in food industry. Structural characterization demonstrated that the -COOH of the two phenolic acids were bonded to the -NH2 of the chitosan and formed an acylamino. The grafting ratios of p-coumaric acid-modified chitosan (Cm-CTS) and caffeic acid-modified chitosan (Cf-CTS) reached 10.30 % and 9.78 %, respectively. After modification, the water solubility of the chitosan greatly improved from 9.33 % (native chitosan, Nt-CTS) to 77.33 % (Cm-CTS) and 100 % (Cf-CTS). Besides, the involvement of phenolic acid and caffeic acid endowed the chitosan with strengthened antioxidation and antibacterial activities against Escherichia coli and Staphylococcus aureus. Nt-CTS and the modified chitosans were coated on the pork surface. The results indicated that Nt-CTS effectively inhibited pork spoilage and the modified chitosans could further prolong the shelf life of pork.
Collapse
Affiliation(s)
- Peng Fei
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group Co., Ltd., Xiamen 361100, China
| | - Youlin Wu
- Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Zhangzhou 363000, China
| | - Liping Xiao
- Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Zhangzhou 363000, China
| | - Yuanhong Zhuang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Nengshui Ding
- Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Zhangzhou 363000, China; Jiangxi Agricultural University, Nanchang 330000, China.
| | - Bingqing Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
22
|
The Positive Influences of Roselle Anthocyanin Active Film on Shrimp (Penaeus vannamei) Sensory Attribute Modification. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|