1
|
Peng Q, Cheng S, Lin J, Zheng H, Xie G. Metabolic and microbial functionality during the fermentation of traditional Amaranth stems: Insights from metagenomics, flavoromics, and metabolomics. Food Chem 2025; 474:143216. [PMID: 39923519 DOI: 10.1016/j.foodchem.2025.143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Fermented Amaranth stems is a traditional Chinese fermented vegetable known for its distinctive aroma, produced through natural microbial fermentation. However, the metabolic processes, flavor compounds, and microbial communities involved in its fermentation are not well understood. This study provides a comprehensive analysis using an integrated approach combining flavoromics, untargeted metabolomics, and metagenomics to examine the dynamic changes in metabolites and microbiota during fermentation. A total of 108 volatile organic compounds were identified, with sugar metabolism peaking on the third day of fermentation. The microbial community analysis revealed that key genera such as Pseudomonas, Acinetobacter, Pectobacterium, and Enterobacter play a significant role in flavor formation. The findings offer critical insights into the fermentation mechanisms and the production of flavor compounds, providing a foundation for optimizing fermentation processes and improving the flavor quality of fermented Amaranth stems. This research holds practical significance for enhancing food safety by controlling microbial communities during fermentation.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Shuangqi Cheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiahao Lin
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (Branch Center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Xie L, Wang X, Wang X, Liu X. Changes in microbial community succession and volatile compounds during the natural fermentation of bangcai. Front Microbiol 2025; 16:1581378. [PMID: 40241728 PMCID: PMC11999953 DOI: 10.3389/fmicb.2025.1581378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Fermented bangcai (Brassica juncea var. crassicaulis) is a traditional Chinese food with unique flavor. However, the formation mechanism of flavor compounds related to the fermentation process of bangcai has not been thoroughly studied. Methods Gas chromatography-ion mobility spectrometry technology combined with metagenomics was used to analyze the characteristic volatile flavor compounds and microbial community structure of bangcai before and after fermentation in this study. Results A total of 91 types of volatile organic compounds were detected in this study. The pungent odor brought by allyl isothiocyanate, 1-butene isothiocyanate, and other substances in the raw materials was removed through fermentation. This process led to the formation of flavor substances such as propyl acetate, ethyl acetate, and 2-methyl-3-furanthiol, which imparted bangcai with flavors of flower and fruit, roast meat, and fried coffee. In addition, our study found that after air drying, bangcai mainly contained γ-butyrolactone, nonanal and other flavor compounds, giving the bangcai products a richer floral and fruity flavor profile. Citrobacter, Lactobacillus, and Leuconostoc were the dominant bacteria in the fermentation process of bangcai. They were significantly related to the formation of differential flavor compounds such as γ-butyrolactone, ethyl 2-methylpropanoat, and benzaldehyde-D. Discussion These results provide a theoretical basis for improving the flavor quality of fermented vegetable products.
Collapse
Affiliation(s)
- Lili Xie
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xueli Wang
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xiujun Wang
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xueting Liu
- Province Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Liu Z, Dong G, Liu J, Wang L, Chen Q, Wang Z, Zeng M, He Z, Chen J, Hu W, Pan H. Screening of strains from pickles and evaluation of characteristics of different methods of fast and low salt fermented mustard leaves (Brassica juncea var. multiceps). Food Res Int 2025; 201:115557. [PMID: 39849706 DOI: 10.1016/j.foodres.2024.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency. Lactiplantibacillus plantarum CS8 and Saccharomyces cerevisiae CX1, were selected for their superior fermentation performance and used in subsequent fermentation. Four fermentation methods (spontaneous fermentation, optimized spontaneous fermentation, co-fermentation, and two-phase fermentation) were compared for fermenting fresh mustard leaves at 30 °C for 5 days. Compared to spontaneous fermentation, the other methods resulted in lower pH, higher acid production, and reduced nitrite content, thereby enhancing food safety. Significant variations in metabolites (volatiles, organic acids, and free amino acids) were observed among the groups, with the two-phase fermentation method showing the most favorable changes. Sensory evaluation and microbial community analysis further indicated that the two-phase fermentation achieved higher scores for flavor, taste and overall acceptability, while also shortening the fermentation period and improving both flavor and safety. Therefore, inoculation with these two strains using the two-phase fermentation method can efficiently produce high-quality pickle products in a short time. This research contributes to the industrial production of fermented vegetables, enhancing both pickle quality and economic benefits.
Collapse
Affiliation(s)
- Zhenheng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gaofeng Dong
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Jing Liu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Lei Wang
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiyao Hu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China.
| | - Hongyang Pan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Xian S, Zhao F, Huang X, Liu X, Zhang Z, Zhou M, Shen G, Li M, Chen A. Effects of Pre-Dehydration Treatments on Physicochemical Properties, Non-Volatile Flavor Characteristics, and Microbial Communities during Paocai Fermentation. Foods 2024; 13:2852. [PMID: 39272618 PMCID: PMC11395261 DOI: 10.3390/foods13172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The paocai industry faces challenges related to the production of large volumes of high-salinity and acidic brine by-products. Maintaining paocai quality while reducing brine production is crucial. This study utilized high-throughput sequencing technology to analyze microbial changes throughout the fermentation process, along with the non-volatile flavor compounds and physicochemical properties, to assess the impact of hot-air and salt-pressing pre-dehydration treatments on paocai quality. The findings indicate that pre-dehydration of raw material slowed the fermentation process but enhanced the concentration of non-volatile flavor substances, including free amino acids and organic acids. Hot-air pre-dehydration effectively reduced initial salinity to levels comparable to those in high-salinity fermentation of fresh vegetables. Furthermore, pre-dehydration altered microbial community structures and simplified inter-microbial relationships during fermentation. However, the key microorganisms such as Lactobacillus, Weissella, Enterobacter, Wallemia, Aspergillus, and Kazachstania remained consistent across all groups. Additionally, this study found that biomarkers influenced non-volatile flavor formation differently depending on the treatment, but these substances had minimal impact on the biomarkers and showed no clear correlation with high-abundance microorganisms. Overall, fermenting pre-dehydrated raw materials presents an environmentally friendly alternative to traditional paocai production.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Feng Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyan Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
5
|
Xiong S, Xu X, Zhang L, Du T, Huang T, Huang J, Ren H, Xiong T, Xie M. Integrated metatranscriptomics and metabolomics reveal microbial succession and flavor formation mechanisms during the spontaneous fermentation of Laotan Suancai. Food Res Int 2024; 177:113865. [PMID: 38225131 DOI: 10.1016/j.foodres.2023.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Laotan Suancai, a Chinese traditional fermented vegetable, possesses a unique flavor that depends on the fermentative microbiota. However, the drivers of microbial succession and the correlation between flavor and active microbiota remain unclear. A total of 21 characteristic flavor metabolites were identified in Laotan Suancai by metabolomics, including 8 sulfides, 6 terpenes, 3 organic acids, 2 isothiocyanates, 1 ester, and 1 pyrazine. Metatranscriptome analysis revealed variations in the active microbiota at different stages of fermentation, and further analysis indicated that organic acids were the primary drivers of microbial succession. Additionally, we reconstructed the metabolic network responsible for the formation of characteristic flavor compounds and identified Companilactobacillus alimentarius, Weissella cibaria, Lactiplantibacillus plantarum, and Loigolactobacillus coryniformis as the core functional microbes involved in flavor development. This study contributed to profoundly understanding the relationship between the active microbiota and flavor quality formation, as well as the targeted selection of starters with flavor regulation abilities.
Collapse
Affiliation(s)
- Shijin Xiong
- State Key Laboratory of Food Science & Resources, Nanchang University, Jiangxi 330047, PR China; School of Food Science & Technology, Nanchang University, Jiangxi 330006, PR China
| | - Xiaoyan Xu
- State Key Laboratory of Food Science & Resources, Nanchang University, Jiangxi 330047, PR China; School of Food Science & Technology, Nanchang University, Jiangxi 330006, PR China
| | - Linli Zhang
- State Key Laboratory of Food Science & Resources, Nanchang University, Jiangxi 330047, PR China; School of Food Science & Technology, Nanchang University, Jiangxi 330006, PR China
| | - Tonghao Du
- State Key Laboratory of Food Science & Resources, Nanchang University, Jiangxi 330047, PR China; School of Food Science & Technology, Nanchang University, Jiangxi 330006, PR China
| | - Tao Huang
- State Key Laboratory of Food Science & Resources, Nanchang University, Jiangxi 330047, PR China; School of Food Science & Technology, Nanchang University, Jiangxi 330006, PR China; International Institute of Food Innovation, Nanchang University, Jiangxi, 330200, PR China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, PR China
| | - Hongbing Ren
- Yunnan Key Laboratory of Fermented Vegetables, Honghe, Yunnan, 661100, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science & Resources, Nanchang University, Jiangxi 330047, PR China; School of Food Science & Technology, Nanchang University, Jiangxi 330006, PR China.
| | - Mingyong Xie
- State Key Laboratory of Food Science & Resources, Nanchang University, Jiangxi 330047, PR China; School of Food Science & Technology, Nanchang University, Jiangxi 330006, PR China
| |
Collapse
|
6
|
Zheng A, Liu J, Wang M, Bu N, Liu D, Wei C. Footprint analysis of CO 2 in microbial community succession of raw milk and assessment of its quality. Front Nutr 2023; 10:1285653. [PMID: 38192649 PMCID: PMC10773745 DOI: 10.3389/fnut.2023.1285653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
With the growing production of raw milk, interest has been increasing in its quality control. CO2, as a cold processing additive, has been studied to extend the cold storage period and improve the quality of raw milk. However, it is yet uncertain how representative microbial species and biomarkers can succeed one another at distinct critical periods during refrigeration. Therefore, the effects of CO2 treatment on the succession footprint of the microbial community and changes in quality during the period of raw milk chilling were examined by 16S rRNA analysis combined with electronic nose, and electronic tongue techniques. The results indicated that, the refrigeration time was shown to be prolonged by CO2 in a concentration-dependent way. And CO2 treatment was linked to substantial variations in beta and alpha diversity as well as the relative abundances of various microbial taxa (p < 0.01). The dominant bacterial phylum Proteobacteria was replaced with Firmicutes, while the major bacterial genera Acinetobacter and Pseudomonas were replaced with lactic acid bacteria (LAB), including Leuconostoc, Lactococcus, and Lactobacillus. From the perspective of biomarkers enriched in CO2-treated sample, almost all of them belong to LAB, no introduction of harmful toxins has been found. The assessment of the quality of raw milk revealed that CO2 improved the quality of raw milk by lowering the acidity and the rate of protein and fat breakdown, and improved the flavor by reducing the generation of volatiles, and increasing umami, richness, milk flavor and sweetness, but reducing sourness. These findings offer a new theoretical foundation for the industrial use of CO2 in raw milk.
Collapse
Affiliation(s)
- Anran Zheng
- School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jun Liu
- School of Animal Science and Technology, Ningxia University, Yinchuan, China
- School of Life Science, Hubei Normal University, Huangshi, China
| | - Mengsong Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Ningxia Bu
- School of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Dunhua Liu
- School of Animal Science and Technology, Ningxia University, Yinchuan, China
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Chaokun Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Lingjuan J, Yu C, Zeyuan D, Bing Z, Hongyan L. Evaluation and comparison of physicochemical properties, volatile substances, and microbial communities of leaf mustard (Brassica juncea var. multiceps) under natural and inoculated fermentation. J Food Sci 2023. [PMID: 37421355 DOI: 10.1111/1750-3841.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/10/2023]
Abstract
Due to the uncontrolled fermentation process and unstable quality of naturally fermented leaf mustard, inoculated fermentation is receiving more attention. Here, the physicochemical properties, volatile compounds, and microbial community in leaf mustard under natural fermentation (NF) and inoculated fermentation (IF) were analyzed and compared. The contents of total acid, crude fiber, and nitrite of leaf mustard were measured. Headspace-solid phase microextraction-gas chromatography-mass spectrometry and orthogonal projection on latent structure-discriminant analysis were used to analyze the differences of volatile compounds in NF and IF leaf mustard. Moreover, Illumina MiSeq high-throughput sequencing technology was employed to reveal the composition of microbiota. The results showed that the nitrite content in leaf mustard after IF (3.69 mg/kg) was significantly lower than that after NF (4.43 mg/kg). A total of 31 and 25 kinds of volatile components were identified in IF and NF, respectively. Among the detected compounds, 11 compounds caused the differences between IF and NF leaf mustard. The results of inter-group difference analysis showed that there were significant differences in fungal flora between IF and NF samples. Saccharomycetes, Kazachstania, and Ascomycota were the landmark microorganisms in IF leaf mustard and the landmark microorganisms in NF were Mortierellomycota, Sordariomycetes, and Eurotiomycetes. The abundance of probiotics (such as Lactobacillus) in IF leaf mustard (51.22%) was higher than that in NF (35.20%) and the abundance of harmful molds (such as Mortierella and Aspergillus) was opposite. Therefore, IF leaf mustard showed the potential to reduce the content of nitrite and harmful molds and increase the beneficial volatile compounds and probiotics. PRACTICAL APPLICATION: Leaf mustard of inoculated fermentation (IF) showed better fermented characteristics than natural fermentation in terms of lower nitrite content, greater beneficial volatile substances, and better potential for increasing probiotics and reducing harmful molds. These results provided a theoretical basis for IF leaf mustard and contributed to the industrial production of fermented leaf mustard.
Collapse
Affiliation(s)
- Jiang Lingjuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Cao Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Deng Zeyuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhang Bing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Li Hongyan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Jiang Y, Fu H, Li M, Wang C. Characterization of Functional Microorganisms in Representative Traditional Fermented Dongcai from Different Regions of China. Foods 2023; 12:1753. [PMID: 37174293 PMCID: PMC10178708 DOI: 10.3390/foods12091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Dongcai is loved for its delicious flavor and nutritional value. The microorganisms in Dongcai play a vital role in their flavor, quality, and safety, and the microbial communities of Dongcai vary greatly from region to region. However, it remains unknown what the predominant microorganisms are in different traditional Dongcai and how they affect its flavor. The objective of this study is to explore the microbial diversity of traditional fermented Dongcai in three representative Chinese regions (Tianjin, Sichuan, and Guangzhou) and further assess their microbial functions. The microbial diversity of fermented Dongcai in Guangdong has the lowest diversity compared to fermented Dongcai in Sichuan, which has the highest. The distribution of the main genera of fermented Dongcai varies from region to region, but Carnimonas, Staphylococcus, Pseudomonas, Sphingomonas, Burkholderia-Caballeronia-Paraburkholderia, and Rhodococcus are the dominant genera in common. In addition, halophilic bacteria (HAB, i.e., Halomonas Bacillus, Virgibacillus, etc.) and lactic acid bacteria (LAB, i.e., Weissella and Lactobacillus) are also highly abundant. Of these, Burkholderia-Caballeronia-Paraburkholderia, Rhodococcus, Sphingomonas, Ralstonia, and Chromohalobacter are dominant in the Sichuan samples. In the Tianjin samples, Lactobacillus, Weissella, Virgibacillus, Enterobacter, Klebsiella, and Pseudomonas are the most abundant. Predictions of microbial metabolic function reveal that carbohydrates, amino acids, polyketides, lipids, and other secondary metabolites are abundantly available for biosynthesis. In addition, the different flavors of the three types of Dongcai may be due to the fact that the abundance of HAB and LAB shows a significant positive correlation with the amounts of important metabolites (e.g., salt, acid, amino nitrogen, and sugar). These results contribute to our understanding of the link between the distinctive flavors of different types of Dongcai and the microorganisms they contain and will also provide a reference for the relationship between microbial communities and flavor substances in semi-fermented pickles.
Collapse
Affiliation(s)
- Yanbing Jiang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Hao Fu
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100040, China; (Y.J.); (H.F.); (C.W.)
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100040, China
| |
Collapse
|
9
|
Yu Y, Xu Y, Li L, Chen S, An K, Yu Y, Xu ZL. Isolation of lactic acid bacteria from Chinese pickle and evaluation of fermentation characteristics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Dynamic changes in the bacterial communities and metabolites of Moringa oleifera leaves during fermentation with or without pyroligneous acid. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
11
|
Marcinkowska MA, Jeleń HH. Role of Sulfur Compounds in Vegetable and Mushroom Aroma. Molecules 2022; 27:6116. [PMID: 36144849 PMCID: PMC9502545 DOI: 10.3390/molecules27186116] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
At the base of the food pyramid is vegetables, which should be consumed most often of all food products, especially in raw and unprocessed form. Vegetables and mushrooms are rich sources of bioactive compounds that can fulfill various functions in plants, starting from protection against herbivores and being natural insecticides to pro-health functions in human nutrition. Many of these compounds contain sulfur in their structure. From the point of view of food producers, it is extremely important to know that some of them have flavor properties. Volatile sulfur compounds are often potent odorants, and in many vegetables, belonging mainly to Brassicaeae and Allium (Amaryllidaceae), sulfur compounds determine their specific flavor. Interestingly, some of the pathways that form volatile sulfur compounds in vegetables are also found in selected edible mushrooms. The most important odor-active organosulfur compounds can be divided into isothiocyanates, nitriles, epithionitriles, thiols, sulfides, and polysulfides, as well as others, such as sulfur containing carbonyl compounds and esters, R-L-cysteine sulfoxides, and finally heterocyclic sulfur compounds found in shiitake mushrooms or truffles. This review paper summarizes their precursors and biosynthesis, as well as their sensory properties and changes in selected technological processes.
Collapse
Affiliation(s)
| | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|