1
|
Harmoko H, Kartasasmita RE, Munawar H, Rohdiana D, Kurniawan F, Tjahjono DH, Fernández-Alba AR. Evaluation of 9,10-anthraquinone contamination in tea products from Indonesian manufacturers and its carcinogenic risk to consumer health. Food Chem Toxicol 2025; 196:115239. [PMID: 39778645 DOI: 10.1016/j.fct.2025.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
This study aimed to determine 9,10-anthraquinone (AQ) levels in Indonesian tea products from different manufacturers and assess the AQ's associated health risks. AQ levels increased significantly during withering and drying stages, using pinewood as a heat source. Generally, black tea was highly contaminated by AQ followed by green tea, oolong tea, and white tea. Out of a total of 116 samples from manufacturers using wood pellets as a heat source, 13% (15/116) of samples were contaminated with AQ exceeding the EU maximum residue level (MRL), and after accounting for measurement uncertainty, this value decreased to only 2% (2/116) that were deemed non-compliant. In contrast, 88% (57/65) and 50% (7/14) of tea samples were contaminated with AQ exceeding the EU MRL when manufacturers used pinewood and palm kernel shells as heat sources, respectively. However, based on our estimation, the risk level due to AQ exposure from Indonesian tea is still manageable, as indicated by calculating incremental lifetime cancer risk, <10⁻⁶ across all conditions studied (age group, type of tea, and heat source).
Collapse
Affiliation(s)
- Harmoko Harmoko
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia; Directorate of Standardization and Quality Control, Ministry of Trade, Republic of Indonesia, Jl. Raya Bogor Km. 26, Ciracas, Jakarta Timur, 13740, Indonesia.
| | - Rahmana Emran Kartasasmita
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia.
| | - Hasim Munawar
- Research Center for Chemistry, National Research and Innovation Agency, Gd. 452 Kawasan PUSPIPTEK, Serpong, Tangerang Selatan, Banten, 15314, Indonesia
| | - Dadan Rohdiana
- Department of Food Technology, Faculty of Agricultural Technology, Al Ghifari University, Indonesia
| | - Fransiska Kurniawan
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Daryono Hadi Tjahjono
- Department of Pharmacochemistry, School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung, 40132, Indonesia.
| | - Amadeo R Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento S/N°, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
2
|
Liu T, Zhang L, Pan L, Yang D. Polycyclic Aromatic Hydrocarbons' Impact on Crops and Occurrence, Sources, and Detection Methods in Food: A Review. Foods 2024; 13:1977. [PMID: 38998483 PMCID: PMC11240991 DOI: 10.3390/foods13131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a category of persistent organic pollutants that pose a global concern in the realm of food safety due to their recognized carcinogenic properties in humans. Food can be contaminated with PAHs that are present in water, air, or soil, or during food processing and cooking. The wide and varied sources of PAHs contribute to their persistent contamination of food, leading to their accumulation within these products. As a result, monitoring of the levels of PAHs in food is necessary to guarantee the safety of food products as well as the public health. This review paper attempts to give its readers an overview of the impact of PAHs on crops, their occurrence and sources, and the methodologies employed for the sample preparation and detection of PAHs in food. In addition, possible directions for future research are proposed. The objective is to provide references for the monitoring, prevention, and in-depth exploration of PAHs in food.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| | - Li Zhang
- Suzhou Vocational University Center for Food Safety and Nutrition, Suzhou 215104, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daifeng Yang
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| |
Collapse
|
3
|
Lu Y, Han H, Huang X, Yi Y, Wang Z, Chai Y, Zhang X, Lu C, Wang C, Chen H. Uptake and translocation of organic pollutants in Camellia sinensis (L.): a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118133-118148. [PMID: 37936031 DOI: 10.1007/s11356-023-30441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Camellia sinensis (L.) is a perennial evergreen woody plant with the potential for environmental pollution due to its unique growth environment and extended growth cycle. Pollution sources and pathways for tea plants encompass various factors, including atmospheric deposition, agricultural inputs of chemical fertilizers and pesticide, uptake from soil, and sewage irrigation. During the cultivation phase, Camellia sinensis (L.) can absorb organic pollutants through its roots and leaves. This review provides an overview of the uptake and translocation mechanisms involving the absorption of polycyclic aromatic hydrocarbons (PAHs), pesticides, anthraquinone (AQ), perchlorate, and other organic pollutants by tea plant roots. Additionally, we summarize how fresh tea leaves can be impacted by spraying pesticide and atmospheric sedimentation. In conclusion, this review highlights current research progress in understanding the pollution risks associated with Camellia sinensis (L.) and its products, emphasizing the need for further investigation and providing insights into potential future directions for research in this field.
Collapse
Affiliation(s)
- Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuchen Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuexing Yi
- School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou, 310008, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou, 310008, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou, 310008, China.
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
4
|
Li S, Wang L, Chen D, Li H. The Application of Cold-Induced Liquid-Liquid Extraction for the Determination of 4-Methylimidazole in Tea and Associated Risk Assessment for Chinese Tea Consumers. TOXICS 2023; 11:916. [PMID: 37999568 PMCID: PMC10674203 DOI: 10.3390/toxics11110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
4-Methylimidazole (4-MEI), as a Maillard reaction product, often occurs in heat-processed food. Due to its widespread occurrence and strong carcinogenicity in food and beverages, 4-MEI has received attention from regulatory organizations and consumers. Some studies have reported the occurrence and exposure of 4-MEI in food, but few studies have involved traditional tea beverages, which is related to the limited analytical methods currently being influenced by complex tea matrices. For this issue, this study presents a simple, reliable, and highly sensitive analytical method for the determination of 4-MEI in tea using liquid chromatography-high resolution mass spectrometry. By means of this method, a total of 570 tea samples from typical tea-producing regions in China were monitored for contamination of 4-MEI. The results showed that the average 4-MEI level (136 μg/kg) in oolong tea was significantly higher than that in other types of tea samples. Based on contamination levels and tea consumption data in China, the daily intake doses (0.04-1.16 μg/day) of 4-MEI among tea consumers were obtained. As a result, the health risk of Chinese tea consumers consuming 4-MEI alone through tea consumption is relatively low, but the overall intake level of 4-MEI in other foods cannot be ignored.
Collapse
Affiliation(s)
- Shaohua Li
- Tea Science Research Institute, Wuyi University, Wuyishan 354300, China;
| | - Lian Wang
- Chengdu Centre for Disease Control and Prevention, Chengdu 610044, China;
| | - Dawei Chen
- School of Public Health, Jinzhou Medical University, Jinzhou 121001, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|