1
|
Tandon I, Woessner AE, Ferreira LA, Shamblin C, Vaca-Diez G, Walls A, Kuczwara P, Applequist A, Nascimento DF, Tandon S, Kim JW, Rausch M, Timek T, Padala M, Kinter MT, Province D, Byrum SD, Quinn KP, Balachandran K. A three-dimensional valve-on-chip microphysiological system implicates cell cycle progression, cholesterol metabolism and protein homeostasis in early calcific aortic valve disease progression. Acta Biomater 2024; 186:167-184. [PMID: 39084496 DOI: 10.1016/j.actbio.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is one of the most common forms of valvulopathy, with a 50 % elevated risk of a fatal cardiovascular event, and greater than 15,000 annual deaths in North America alone. The treatment standard is valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. The development of early diagnostic and therapeutic strategies requires the fabrication of effective in vitro valve mimetic models to elucidate early CAVD mechanisms. METHODS In this study, we developed a multilayered physiologically relevant 3D valve-on-chip (VOC) system that incorporated aortic valve mimetic extracellular matrix (ECM), porcine aortic valve interstitial cell (VIC) and endothelial cell (VEC) co-culture and dynamic mechanical stimuli. Collagen and glycosaminoglycan (GAG) based hydrogels were assembled in a bilayer to mimic healthy or diseased compositions of the native fibrosa and spongiosa. Multiphoton imaging and proteomic analysis of healthy and diseased VOCs were performed. RESULTS Collagen-based bilayered hydrogel maintained the phenotype of the VICs. Proteins related to cellular processes like cell cycle progression, cholesterol biosynthesis, and protein homeostasis were found to be significantly altered and correlated with changes in cell metabolism in diseased VOCs. This study suggested that diseased VOCs may represent an early, adaptive disease initiation stage, which was corroborated by human aortic valve proteomic assessment. CONCLUSIONS In this study, we developed a collagen-based bilayered hydrogel to mimic healthy or diseased compositions of the native fibrosa and spongiosa layers. When the gels were assembled in a VOC with VECs and VICs, the diseased VOCs revealed key insights about the CAVD initiation process. STATEMENT OF SIGNIFICANCE Calcific aortic valve disease (CAVD) elevates the risk of death due to cardiovascular pathophysiology by 50 %, however, prevention and mitigation strategies are lacking, clinically. Developing tools to assess early disease would significantly aid in the prevention of disease and in the development of therapeutics. Previously, studies have utilized collagen and glycosaminoglycan-based hydrogels for valve cell co-cultures, valve cell co-cultures in dynamic environments, and inorganic polymer-based multilayered hydrogels; however, these approaches have not been combined to make a physiologically relevant model for CAVD studies. We fabricated a bi-layered hydrogel that closely mimics the aortic valve and used it for valve cell co-culture in a dynamic platform to gain mechanistic insights into the CAVD initiation process using proteomic and multiphoton imaging assessment.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Alan E Woessner
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA
| | - Laίs A Ferreira
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Gustavo Vaca-Diez
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Amanda Walls
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Patrick Kuczwara
- Department of Biological and Agricultural Engineering, Materials Science & Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Alexis Applequist
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Denise F Nascimento
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Swastika Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, Materials Science & Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Manuel Rausch
- Departments of Aerospace Engineering and Engineering Mechanics and Biomedical Engineering, Institute for Computational Engineering and Science, University of Texas at Austin, Austin, TX, USA
| | - Tomasz Timek
- Meijer Heart and Vascular Institute at Spectrum Health, Grand Rapids, MI, USA
| | - Muralidhar Padala
- Division of Cardiothoracic Surgery, Joseph P. Whitehead Department of Surgery, Emory University, Atlanta, GA, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dennis Province
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
2
|
Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, Yaqinuddin A, Tchkonia T, Kirkland JL, Hashmi SK. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci 2023; 15:1281581. [PMID: 38076538 PMCID: PMC10702235 DOI: 10.3389/fnagi.2023.1281581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
Cellular senescence is a biological aging hallmark that plays a key role in the development of neurodegenerative diseases. Clinical trials are currently underway to evaluate the effectiveness of senotherapies for these diseases. However, the impact of senescence on brain aging and cognitive decline in the absence of neurodegeneration remains uncertain. Moreover, patient populations like cancer survivors, traumatic brain injury survivors, obese individuals, obstructive sleep apnea patients, and chronic kidney disease patients can suffer age-related brain changes like cognitive decline prematurely, suggesting that they may suffer accelerated senescence in the brain. Understanding the role of senescence in neurocognitive deficits linked to these conditions is crucial, especially considering the rapidly evolving field of senotherapeutics. Such treatments could help alleviate early brain aging in these patients, significantly reducing patient morbidity and healthcare costs. This review provides a translational perspective on how cellular senescence plays a role in brain aging and age-related cognitive decline. We also discuss important caveats surrounding mainstream senotherapies like senolytics and senomorphics, and present emerging evidence of hyperbaric oxygen therapy and immune-directed therapies as viable modalities for reducing senescent cell burden.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, SSMC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Alcalde-Estévez E, Sosa P, Asenjo-Bueno A, Plaza P, Valenzuela PL, Naves-Díaz M, Olmos G, López-Ongil S, Ruiz-Torres MP. Dietary phosphate restriction prevents the appearance of sarcopenia signs in old mice. J Cachexia Sarcopenia Muscle 2023; 14:1060-1074. [PMID: 36855841 PMCID: PMC10067497 DOI: 10.1002/jcsm.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Sarcopenia is defined by the progressive and generalized loss of muscle mass and function associated with aging. We have previously proposed that aging-related hyperphosphataemia is linked with the appearance of sarcopenia signs. Because there are not effective treatments to prevent sarcopenia, except for resistance exercise, we propose here to analyse whether the dietary restriction of phosphate could be a useful strategy to improve muscle function and structure in an animal model of aging. METHODS Five-month-old (young), 24-month-old (old) and 28-month-old (geriatric) male C57BL6 mice were used. Old and geriatric mice were divided into two groups, one fed with a standard diet (0.6% phosphate) and the other fed with a low-phosphate (low-P) diet (0.2% phosphate) for 3 or 7 months, respectively. A phosphate binder, Velphoro®, was also supplemented in a group of old mice, mixed with a standard milled diet for 3 months. Muscle mass was measured by the weight of gastrocnemius and tibial muscles, and quality by nuclear magnetic resonance imaging (NMRI) and histological staining assays. Muscle strength was measured by grip test and contractile properties of the tibialis muscle by electrical stimulation of the common peroneal nerve. Gait parameters were analysed during the spontaneous locomotion of the mice with footprinting. Orientation and motor coordination were evaluated using a static rod test. RESULTS Old mice fed with low-P diet showed reduced serum phosphate concentration (16.46 ± 0.77 mg/dL young; 21.24 ± 0.95 mg/dL old; 17.46 ± 0.82 mg/dL low-P diet). Old mice fed with low-P diet displayed 44% more mass in gastrocnemius muscles with respect to old mice (P = 0.004). NMRI revealed a significant reduction in T2 relaxation time (P = 0.014) and increased magnetization transfer (P = 0.045) and mean diffusivity (P = 0.045) in low-P diet-treated mice compared with their coetaneous. The hypophosphataemic diet increased the fibre size and reduced the fibrotic area by 52% in gastrocnemius muscle with respect to old mice (P = 0.002). Twitch force and tetanic force were significantly increased in old mice fed with the hypophosphataemic diet (P = 0.004 and P = 0.014, respectively). Physical performance was also improved, increasing gait speed by 30% (P = 0.032) and reducing transition time in the static rod by 55% (P = 0.012). Similar results were found when diet was supplemented with Velphoro®. CONCLUSIONS The dietary restriction of phosphate in old mice improves muscle quantity and quality, muscle strength and physical performance. Similar results were found using the phosphate binder Velphoro®, supporting the role of phosphate in the impairment of muscle structure and function that occurs during aging.
Collapse
Affiliation(s)
- Elena Alcalde-Estévez
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Sosa
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Fundación para la investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Ana Asenjo-Bueno
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación Clínica de Cáncer de Pulmón H120-CNIO, Madrid, Spain
| | - Pedro L Valenzuela
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Manuel Naves-Díaz
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gemma Olmos
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - María P Ruiz-Torres
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| |
Collapse
|
4
|
Phadwal K, Tang QY, Luijten I, Zhao JF, Corcoran B, Semple RK, Ganley IG, MacRae VE. p53 Regulates Mitochondrial Dynamics in Vascular Smooth Muscle Cell Calcification. Int J Mol Sci 2023; 24:1643. [PMID: 36675156 PMCID: PMC9864220 DOI: 10.3390/ijms24021643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Arterial calcification is an important characteristic of cardiovascular disease. It has key parallels with skeletal mineralization; however, the underlying cellular mechanisms responsible are not fully understood. Mitochondrial dynamics regulate both bone and vascular function. In this study, we therefore examined mitochondrial function in vascular smooth muscle cell (VSMC) calcification. Phosphate (Pi)-induced VSMC calcification was associated with elongated mitochondria (1.6-fold increase, p < 0.001), increased mitochondrial reactive oxygen species (ROS) production (1.83-fold increase, p < 0.001) and reduced mitophagy (9.6-fold decrease, p < 0.01). An increase in protein expression of optic atrophy protein 1 (OPA1; 2.1-fold increase, p < 0.05) and a converse decrease in expression of dynamin-related protein 1 (DRP1; 1.5-fold decrease, p < 0.05), two crucial proteins required for the mitochondrial fusion and fission process, respectively, were noted. Furthermore, the phosphorylation of DRP1 Ser637 was increased in the cytoplasm of calcified VSMCs (5.50-fold increase), suppressing mitochondrial translocation of DRP1. Additionally, calcified VSMCs showed enhanced expression of p53 (2.5-fold increase, p < 0.05) and β-galactosidase activity (1.8-fold increase, p < 0.001), the cellular senescence markers. siRNA-mediated p53 knockdown reduced calcium deposition (8.1-fold decrease, p < 0.01), mitochondrial length (3.0-fold decrease, p < 0.001) and β-galactosidase activity (2.6-fold decrease, p < 0.001), with concomitant mitophagy induction (3.1-fold increase, p < 0.05). Reduced OPA1 (4.1-fold decrease, p < 0.05) and increased DRP1 protein expression (2.6-fold increase, p < 0.05) with decreased phosphorylation of DRP1 Ser637 (3.20-fold decrease, p < 0.001) was also observed upon p53 knockdown in calcifying VSMCs. In summary, we demonstrate that VSMC calcification promotes notable mitochondrial elongation and cellular senescence via DRP1 phosphorylation. Furthermore, our work indicates that p53-induced mitochondrial fusion underpins cellular senescence by reducing mitochondrial function.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Qi-Yu Tang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Brendan Corcoran
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Robert K. Semple
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation & Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Vicky E. MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
5
|
Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18:611-627. [PMID: 35922662 PMCID: PMC9362342 DOI: 10.1038/s41581-022-00601-z] [Citation(s) in RCA: 499] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a ubiquitous process with roles in tissue remodelling, including wound repair and embryogenesis. However, prolonged senescence can be maladaptive, leading to cancer development and age-related diseases. Cellular senescence involves cell-cycle arrest and the release of inflammatory cytokines with autocrine, paracrine and endocrine activities. Senescent cells also exhibit morphological alterations, including flattened cell bodies, vacuolization and granularity in the cytoplasm and abnormal organelles. Several biomarkers of cellular senescence have been identified, including SA-βgal, p16 and p21; however, few markers have high sensitivity and specificity. In addition to driving ageing, senescence of immune and parenchymal cells contributes to the development of a variety of diseases and metabolic disorders. In the kidney, senescence might have beneficial roles during development and recovery from injury, but can also contribute to the progression of acute kidney injury and chronic kidney disease. Therapies that target senescence, including senolytic and senomorphic drugs, stem cell therapies and other interventions, have been shown to extend lifespan and reduce tissue injury in various animal models. Early clinical trials confirm that senotherapeutic approaches could be beneficial in human disease. However, larger clinical trials are needed to translate these approaches to patient care.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Foudi N, Palayer M, Briet M, Garnier AS. Arterial Remodelling in Chronic Kidney Disease: Impact of Uraemic Toxins and New Pharmacological Approaches. J Clin Med 2021; 10:3803. [PMID: 34501251 PMCID: PMC8432213 DOI: 10.3390/jcm10173803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health concern that affects around 10 percent of the world's population. The severity of CKD is mainly due to the high prevalence of cardiovascular (CV) complications in this population. The aim of this review is to describe the arterial remodelling associated with CKD, to provide a quick overview of the mechanisms involved and to review the recent pharmacological approaches aimed at improving vascular health in CKD. CKD patients are exposed to metabolic and haemodynamic disorders that may affect the CV system. Large artery functional and geometric abnormalities have been well documented in CKD patients and are associated with an increase in arterial stiffness and a maladaptive remodelling. Uraemic toxins, such as indoxyl sulphate, p-cresyl sulphate, protein carbamylation and advanced glycation products, exert various effects on vascular smooth muscle cell functions. The low-grade inflammation associated with CKD may also affect arterial wall composition and remodelling. It is worth noting that the CV risk for CKD patients remains high despite the pharmacological control of traditional CV risk factors, suggesting the need for innovative therapeutic strategies. An interventional study targeting the NLRP3 inflammasome has provided some interesting preliminary results that need to be confirmed, especially in terms of safety.
Collapse
Affiliation(s)
- Nabil Foudi
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Université Angers, F-49000 Angers, France; (N.F.); (M.P.); (A.-S.G.)
| | - Maeva Palayer
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Université Angers, F-49000 Angers, France; (N.F.); (M.P.); (A.-S.G.)
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, F-49000 Angers, France
| | - Marie Briet
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Université Angers, F-49000 Angers, France; (N.F.); (M.P.); (A.-S.G.)
- Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, F-49000 Angers, France
| | - Anne-Sophie Garnier
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Université Angers, F-49000 Angers, France; (N.F.); (M.P.); (A.-S.G.)
- Service de Néphrologie-Dialyse-Transplantation, Centre Hospitalo-Universitaire d’Angers, F-49000 Angers, France
| |
Collapse
|
7
|
Asenjo-Bueno A, Alcalde-Estévez E, El Assar M, Olmos G, Plaza P, Sosa P, Martínez-Miguel P, Ruiz-Torres MP, López-Ongil S. Hyperphosphatemia-Induced Oxidant/Antioxidant Imbalance Impairs Vascular Relaxation and Induces Inflammation and Fibrosis in Old Mice. Antioxidants (Basel) 2021; 10:antiox10081308. [PMID: 34439556 PMCID: PMC8389342 DOI: 10.3390/antiox10081308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas, compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells (SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4 expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxidant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular function in old mice.
Collapse
Affiliation(s)
- Ana Asenjo-Bueno
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Elena Alcalde-Estévez
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, 28905 Madrid, Spain;
| | - Gemma Olmos
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
| | - Patricia Plaza
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
| | - Patricia Sosa
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
| | - Patricia Martínez-Miguel
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| | - María Piedad Ruiz-Torres
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.A.-E.); (G.O.); (P.S.); (M.P.R.-T.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain; (A.A.-B.); (P.P.); (P.M.-M.)
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), 28003 Madrid, Spain
- Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, 28046 Madrid, Spain
- Correspondence: ; Tel.: +34-91-887-8100 (ext. 2604); Fax: +34-91-882-2674
| |
Collapse
|
8
|
Abbasian N. Vascular Calcification Mechanisms: Updates and Renewed Insight into Signaling Pathways Involved in High Phosphate-Mediated Vascular Smooth Muscle Cell Calcification. Biomedicines 2021; 9:804. [PMID: 34356868 PMCID: PMC8301440 DOI: 10.3390/biomedicines9070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is associated with aging, cardiovascular and renal diseases and results in poor morbidity and increased mortality. VC occurs in patients with chronic kidney disease (CKD), a condition that is associated with high serum phosphate (Pi) and severe cardiovascular consequences. High serum Pi level is related to some pathologies which affect the behaviour of vascular cells, including platelets, endothelial cells (ECs) and smooth muscle cells (SMCs), and plays a central role in promoting VC. VC is a complex, active and cell-mediated process involving the transdifferentiation of vascular SMCs to a bone-like phenotype, systemic inflammation, decreased anti-calcific events (loss of calcification inhibitors), loss in SMC lineage markers and enhanced pro-calcific microRNAs (miRs), an increased intracellular calcium level, apoptosis, aberrant DNA damage response (DDR) and senescence of vascular SMCs. This review gives a brief overview of the current knowledge of VC mechanisms with a particular focus on Pi-induced changes in the vascular wall important in promoting calcification. In addition to reviewing the main findings, this review also sheds light on directions for future research in this area and discusses emerging pathways such as Pi-regulated intracellular calcium signaling, epigenetics, oxidative DNA damage and senescence-mediated mechanisms that may play critical, yet to be explored, regulatory and druggable roles in limiting VC.
Collapse
Affiliation(s)
- Nima Abbasian
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
| |
Collapse
|
9
|
Kim H, Yu MR, Lee H, Kwon SH, Jeon JS, Han DC, Noh H. Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell 2021; 20:e13317. [PMID: 33524231 PMCID: PMC7884040 DOI: 10.1111/acel.13317] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising source of cell‐based regenerative therapy. In consideration of the risk of allosensitization, autologous MSC‐based therapy is preferred over allogenic transplantation in patients with chronic kidney disease (CKD). However, it remains uncertain whether adequate cell functionality is maintained under uremic conditions. As chronic inflammation and oxidative stress in CKD may lead to the accumulation of senescent cells, we investigated cellular senescence of CKD MSCs and determined the effects of metformin on CKD‐associated cellular senescence in bone marrow MSCs from sham‐operated and subtotal nephrectomized mice and further explored in adipose tissue‐derived MSCs from healthy kidney donors and patients with CKD. CKD MSCs showed reduced proliferation, accelerated senescence, and increased DNA damage as compared to control MSCs. These changes were significantly attenuated following metformin treatment. Lipopolysaccharide and transforming growth factor β1‐treated HK2 cells showed lower tubular expression of proinflammatory and fibrogenesis markers upon co‐culture with metformin‐treated CKD MSCs than with untreated CKD MSCs, suggestive of enhanced paracrine action of CKD MSCs mediated by metformin. In unilateral ureteral obstruction kidneys, metformin‐treated CKD MSCs more effectively attenuated inflammation and fibrosis as compared to untreated CKD MSCs. Thus, metformin preconditioning may exhibit a therapeutic benefit by targeting accelerated senescence of CKD MSCs.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Department of Internal Medicine Soon Chun Hyang University Seoul Korea
- Hyonam Kidney Laboratory Soon Chun Hyang University Seoul Korea
| | - Mi Ra Yu
- Hyonam Kidney Laboratory Soon Chun Hyang University Seoul Korea
| | - Haekyung Lee
- Department of Internal Medicine Soon Chun Hyang University Seoul Korea
| | - Soon Hyo Kwon
- Department of Internal Medicine Soon Chun Hyang University Seoul Korea
- Hyonam Kidney Laboratory Soon Chun Hyang University Seoul Korea
| | - Jin Seok Jeon
- Department of Internal Medicine Soon Chun Hyang University Seoul Korea
- Hyonam Kidney Laboratory Soon Chun Hyang University Seoul Korea
| | - Dong Cheol Han
- Department of Internal Medicine Soon Chun Hyang University Seoul Korea
- Hyonam Kidney Laboratory Soon Chun Hyang University Seoul Korea
| | - Hyunjin Noh
- Department of Internal Medicine Soon Chun Hyang University Seoul Korea
- Hyonam Kidney Laboratory Soon Chun Hyang University Seoul Korea
| |
Collapse
|
10
|
Alcalde-Estévez E, Asenjo-Bueno A, Sosa P, Olmos G, Plaza P, Caballero-Mora MÁ, Rodríguez-Puyol D, Ruíz-Torres MP, López-Ongil S. Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia. Aging (Albany NY) 2020; 12:11200-11223. [PMID: 32572011 PMCID: PMC7343454 DOI: 10.18632/aging.103450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction, with increased endothelin-1 (ET-1) synthesis, and sarcopenia, characterized by the loss of muscular mass and strength, are two aging–related conditions. However, a relationship between them has not been already established. The aim of this study was to determine whether ET-1 induces senescence and fibrosis in cultured murine myoblasts, which could be involved in the development of sarcopenia related to aging. For this purpose, myoblasts were incubated with ET-1 to assess cellular senescence, analyzed by senescence associated β-galactosidase activity and p16 expression; and fibrosis, assessed by fibronectin expression. ET-1 induced myoblast senescence and fibrosis through ETA receptor. The use of antioxidants and several antagonists revealed that ET-1 effect on senescence and fibrosis depended on ROS production and activation of PI3K-AKT-GSK pathway. To stress the in vivo relevance of these results, circulating ET-1, muscular strength, muscular fibrosis and p16 expression were measured in male C57Bl6 mice from 5-18-24-months-old. Old mice shown high levels of ET-1 correlated with muscular fibrosis, muscular p16 expression and loss of muscle strength. In conclusion, ET-1 promotes fibrosis and senescence in cultured myoblasts, similar results were found in old mice, suggesting a potential role for ET-1 in the development of sarcopenia related to aging.
Collapse
Affiliation(s)
- Elena Alcalde-Estévez
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Ana Asenjo-Bueno
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain
| | - Patricia Sosa
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Gemma Olmos
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain
| | - Patricia Plaza
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain
| | | | - Diego Rodríguez-Puyol
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain.,Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain
| | - María Piedad Ruíz-Torres
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain
| |
Collapse
|
11
|
Dynamic thiol/disulfide homeostasis and oxidant status in patients with hypoparathyroidism. J Med Biochem 2019; 39:231-239. [PMID: 33033457 DOI: 10.2478/jomb-2019-0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background In this study, we aimed at determining the dynamic thiol/disulfide homeostasis and oxidant balance, and investigating the relation of these parameters to the severity of the disease and the serum calcium levels. Methods 55 patients with iatrogenic hypoparathyroidism follow-ups and 40 healthy volunteers were included in the study. The blood dynamic thiol/sulfide balance, Total Antioxidant Status (TAS), Total Oxidant Status (TOS), Paraoxonase Enzyme Activity (PON) levels were measured in serum samples. Results In our study, it was found that the disulfide, disulfide/native thiol, disulfide/total thiol levels were higher in the hypoparathyroidism group. A negative correlation was found between 25-hydroxy vitamin D (25-OH vitamin D) and disulfide, disulfide/native thiol and disulfide/total thiol, and a positive correlation was found between native thiol and total thiol ratio; and the corrected calcium levels and PON levels were negatively correlated. Conclusions Consequently, a change in favour of disulfide was found in the dynamic thiol-disulfide homeostasis in the hypoparathyroidism group in our study.
Collapse
|
12
|
Sosa P, Alcalde-Estevez E, Plaza P, Troyano N, Alonso C, Martínez-Arias L, Evelem de Melo Aroeira A, Rodriguez-Puyol D, Olmos G, López-Ongil S, Ruíz-Torres MP. Hyperphosphatemia Promotes Senescence of Myoblasts by Impairing Autophagy Through Ilk Overexpression, A Possible Mechanism Involved in Sarcopenia. Aging Dis 2018; 9:769-784. [PMID: 30271655 PMCID: PMC6147593 DOI: 10.14336/ad.2017.1214] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
In mammalians, advancing age is associated with sarcopenia, the progressive and involuntary loss of muscle mass and strength. Hyperphosphatemia is an aging-related condition involved in several pathologies. The aim of this work was to assess whether hyperphosphatemia plays a role in the age-related loss of mass muscle and strength by inducing cellular senescence in murine myoblasts and to explore the intracellular mechanism involved in this effect. Cultured mouse C2C12 cells were treated with 10 mM beta-glycerophosphate (BGP] at different periods of time to induce hyperphosphatemia. BGP promoted cellular senescence after 24 h of treatment, assessed by the increased expression of p53, acetylated-p53 and p21 and senescence associated β-galactosidase activity. In parallel, BGP increased ILK expression and activity, followed by mTOR activation and autophagy reduction. Knocking-down ILK expression increased autophagy and protected cells from senescence induced by hyperphosphatemia. BGP also reduced the proliferative capacity of cultured myoblasts. Old mice (24-months-old] presented higher serum phosphate concentration, lower forelimb strength, higher expression of p53 and ILK and less autophagy in vastus muscle than young mice (5-months-old]. In conclusion, we propose that hyperphosphatemia induces senescence in cultured myoblasts through ILK overexpression, reducing their proliferative capacity, which could be a mechanism involved in the development of sarcopenia, since old mice showed loss of muscular strength correlated with high serum phosphate concentration and increased levels of ILK and p53.
Collapse
Affiliation(s)
- Patricia Sosa
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
| | - Elena Alcalde-Estevez
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
- Research Unit, Biomedical Research Foundation from Príncipe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain.
| | - Patricia Plaza
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
| | - Nuria Troyano
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
| | - Cristina Alonso
- Geriatric and Frailty Section, Getafe University Hospital, Getafe, Madrid, Spain.
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias. Instituto de Investigación Sanitaria del Principado de Asturias, Red de Investigación Renal (REDinREN] del ISCIII, Oviedo, Spain
| | | | - Diego Rodriguez-Puyol
- Research Unit, Biomedical Research Foundation from Príncipe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain.
- Nephrology Section, Biomedical Research Foundation from Principe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| | - Gemma Olmos
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| | - Susana López-Ongil
- Research Unit, Biomedical Research Foundation from Príncipe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain.
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| | - María P. Ruíz-Torres
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| |
Collapse
|
13
|
The Impact of Uremic Toxins on Vascular Smooth Muscle Cell Function. Toxins (Basel) 2018; 10:toxins10060218. [PMID: 29844272 PMCID: PMC6024314 DOI: 10.3390/toxins10060218] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with profound vascular remodeling, which accelerates the progression of cardiovascular disease. This remodeling is characterized by intimal hyperplasia, accelerated atherosclerosis, excessive vascular calcification, and vascular stiffness. Vascular smooth muscle cell (VSMC) dysfunction has a key role in the remodeling process. Under uremic conditions, VSMCs can switch from a contractile phenotype to a synthetic phenotype, and undergo abnormal proliferation, migration, senescence, apoptosis, and calcification. A growing body of data from experiments in vitro and animal models suggests that uremic toxins (such as inorganic phosphate, indoxyl sulfate and advanced-glycation end products) may directly impact the VSMCs’ physiological functions. Chronic, low-grade inflammation and oxidative stress—hallmarks of CKD—are also strong inducers of VSMC dysfunction. Here, we review current knowledge about the impact of uremic toxins on VSMC function in CKD, and the consequences for pathological vascular remodeling.
Collapse
|
14
|
Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat Rev Nephrol 2018; 14:265-284. [PMID: 29332935 DOI: 10.1038/nrneph.2017.169] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many of the >2 million animal species that inhabit Earth have developed survival mechanisms that aid in the prevention of obesity, kidney disease, starvation, dehydration and vascular ageing; however, some animals remain susceptible to these complications. Domestic and captive wild felids, for example, show susceptibility to chronic kidney disease (CKD), potentially linked to the high protein intake of these animals. By contrast, naked mole rats are a model of longevity and are protected from extreme environmental conditions through mechanisms that provide resistance to oxidative stress. Biomimetic studies suggest that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) offers protection in extreme environmental conditions and promotes longevity in the animal kingdom. Similarly, during months of fasting, immobilization and anuria, hibernating bears are protected from muscle wasting, azotaemia, thrombotic complications, organ damage and osteoporosis - features that are often associated with CKD. Improved understanding of the susceptibility and protective mechanisms of these animals and others could provide insights into novel strategies to prevent and treat several human diseases, such as CKD and ageing-associated complications. An integrated collaboration between nephrologists and experts from other fields, such as veterinarians, zoologists, biologists, anthropologists and ecologists, could introduce a novel approach for improving human health and help nephrologists to find novel treatment strategies for CKD.
Collapse
|
15
|
Olmos G, Martínez‐Miguel P, Alcalde‐Estevez E, Medrano D, Sosa P, Rodríguez‐Mañas L, Naves‐Diaz M, Rodríguez‐Puyol D, Ruiz‐Torres MP, López‐Ongil S. Hyperphosphatemia induces senescence in human endothelial cells by increasing endothelin-1 production. Aging Cell 2017; 16:1300-1312. [PMID: 28857396 PMCID: PMC5676064 DOI: 10.1111/acel.12664] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
Hyperphosphatemia is related to some pathologies, affecting vascular cell behavior. This work analyzes whether high concentration of extracellular phosphate induces endothelial senescence through up‐regulation of endothelin‐1 (ET‐1), exploring the mechanisms involved. The phosphate donor β‐glycerophosphate (BGP) in human endothelial cells increased ET‐1 production, endothelin‐converting enzyme‐1 (ECE‐1) protein, and mRNA expression, which depend on the AP‐1 activation through ROS production. In parallel, BGP also induced endothelial senescence by increasing p16 expression and the senescence‐associated β‐galactosidase (SA‐ß‐GAL) activity. ET‐1 itself was able to induce endothelial senescence, increasing p16 expression and SA‐ß‐GAL activity. In addition, senescence induced by BGP was blocked when different ET‐1 system antagonists were used. BGP increased ROS production at short times, and the presence of antioxidants prevented the effect of BGP on AP1 activation, ECE‐1 expression, and endothelial senescence. These findings were confirmed in vivo with two animal models in which phosphate serum levels were increased: seven/eight nephrectomized rats as chronic kidney disease models fed on a high phosphate diet and aged mice. Both models showed hyperphosphatemia, higher levels of ET‐1, and up‐regulation in aortic ECE‐1, suggesting a direct relationship between hyperphosphatemia and ET‐1. Present results point to a new and relevant role of hyperphosphatemia on the regulation of ET‐1 system and senescence induction at endothelial level, both in endothelial cells and aorta from two animal models. The mechanism involved showed a higher ROS production, which probably activates AP‐1 transcription factor and, as a result, ECE‐1 expression, increasing ET‐1 synthesis, which in consequence induces endothelial senescence.
Collapse
Affiliation(s)
- Gemma Olmos
- System Biology Department Alcala University Alcalá de Henares Madrid Spain
- Instituto Reina Sofía de Investigación Nefrológica IRSIN Madrid Spain
| | - Patricia Martínez‐Miguel
- Research Unit Biomedical Research Foundation from Príncipe de Asturias University Hospital Alcalá de Henares Madrid Spain
- Nephrology Section Biomedical Research Foundation from Príncipe de Asturias University Hospital Alcalá de Henares Madrid Spain
| | - Elena Alcalde‐Estevez
- Research Unit Biomedical Research Foundation from Príncipe de Asturias University Hospital Alcalá de Henares Madrid Spain
| | - Diana Medrano
- Research Unit Biomedical Research Foundation from Príncipe de Asturias University Hospital Alcalá de Henares Madrid Spain
| | - Patricia Sosa
- System Biology Department Alcala University Alcalá de Henares Madrid Spain
| | | | - Manuel Naves‐Diaz
- Instituto Reina Sofía de Investigación Nefrológica IRSIN Madrid Spain
- Bone and Mineral Research Unit Asturias Central University Hospital Oviedo Spain
| | - Diego Rodríguez‐Puyol
- Instituto Reina Sofía de Investigación Nefrológica IRSIN Madrid Spain
- Research Unit Biomedical Research Foundation from Príncipe de Asturias University Hospital Alcalá de Henares Madrid Spain
- Nephrology Section Biomedical Research Foundation from Príncipe de Asturias University Hospital Alcalá de Henares Madrid Spain
| | - María Piedad Ruiz‐Torres
- System Biology Department Alcala University Alcalá de Henares Madrid Spain
- Instituto Reina Sofía de Investigación Nefrológica IRSIN Madrid Spain
| | - Susana López‐Ongil
- Instituto Reina Sofía de Investigación Nefrológica IRSIN Madrid Spain
- Research Unit Biomedical Research Foundation from Príncipe de Asturias University Hospital Alcalá de Henares Madrid Spain
| |
Collapse
|
16
|
McClelland R, Christensen K, Mohammed S, McGuinness D, Cooney J, Bakshi A, Demou E, MacDonald E, Caslake M, Stenvinkel P, Shiels PG. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake. Aging (Albany NY) 2017; 8:1135-49. [PMID: 27132985 PMCID: PMC4931858 DOI: 10.18632/aging.100948] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/16/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. RESULTS We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. CONCLUSIONS Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status.
Collapse
Affiliation(s)
- Ruth McClelland
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | - Kelly Christensen
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | - Suhaib Mohammed
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | | | | | - Andisheh Bakshi
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Evangelia Demou
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Ewan MacDonald
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Muriel Caslake
- School of Medicine, MVLS, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
17
|
Integrin-linked kinase: A new actor in the ageing process? Exp Gerontol 2017; 100:87-90. [PMID: 29101014 DOI: 10.1016/j.exger.2017.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 02/05/2023]
Abstract
Integrin-linked kinase (ILK) is a protein located in focal adhesion complexes that is linked to the cytoplasmic domain of integrin receptors. Together with PINCH and parvin, ILK forms the IPP complex, which is associated with conserved intracellular signalling pathways and integrin regulation of the actin cytoskeleton. ILK plays an essential role in a wide variety of cellular functions, including cell migration, differentiation, survival, and division. The present review summarizes recent evidence, suggesting a new role for ILK in organismal ageing and cellular senescence, indicating that ILK is a key regulator of longevity and premature cellular senescence induced by extracellular stressors.
Collapse
|
18
|
Song H, Liang W, Xu S, Li Z, Chen Z, Cui W, Zhou J, Wang Q, Liu F, Fan W. A novel role for integrin-linked kinase in periodic mechanical stress-mediated ERK1/2 mitogenic signaling in rat chondrocytes. Cell Biol Int 2016; 40:832-9. [PMID: 27154044 DOI: 10.1002/cbin.10622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022]
Abstract
In recent years, a variety of studies have been performed to investigate the cellular responses of periodic mechanical stress on chondrocytes. Integrin β1-mediated ERK1/2 activation was proven to be indispensable in periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. However, other signal proteins responsible for the mitogenesis of chondrocytes under periodic mechanical stress remain incompletely understood. In the current investigation, we probed the roles of integrin-linked kinase (ILK) signaling in periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. We found that upon periodic mechanical stress induction, ILK activity increased significantly. Depletion of ILK with targeted shRNA strongly inhibited periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. In addition, pretreatment with a blocking antibody against integrin β1 resulted in a remarkable decrease in ILK activity in cells exposed to periodic mechanical stress. Furthermore, inhibition of ILK with its target shRNA significantly suppressed ERK1/2 activation in relation to periodic mechanical stress. Based on the above results, we identified ILK as a crucial regulator involved in the integrin β1-ERK1/2 signal cascade responsible for periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis.
Collapse
Affiliation(s)
- Huanghe Song
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Wenwei Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Shun Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Zeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Zhefeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Weiding Cui
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Jinchun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| |
Collapse
|