1
|
Khalid S, Rasheed U, Qamar U. GenF: A longevity predicting framework to aid public health sectors. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
2
|
Zhao X, Liu X, Zhang A, Chen H, Huo Q, Li W, Ye R, Chen Z, Liang L, Liu QA, Shen J, Jin X, Li W, Nygaard M, Liu X, Hou Y, Ni T, Bolund L, Gottschalk W, Tao W, Gu J, Tian XL, Yang H, Wang J, Xu X, Lutz MW, Min J, Zeng Y, Nie C. The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. Aging (Albany NY) 2019; 10:1206-1222. [PMID: 29883365 PMCID: PMC6046244 DOI: 10.18632/aging.101461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) have been shown to cause numerous diseases, however, their roles in human lifespan remain elusive. In this study, we investigate the association of CNVs with longevity by comparing the Han Chinese genomes of long-lived individuals from 90 to 117 years of age and the middle-aged from 30 to 65. Our data demonstrate that the numbers of CNVs, especially deletions, increase significantly in a direct correlation with longevity. We identify eleven CNVs that strongly associate with longevity; four of them locate in the chromosome bands, 7p11.2, 20q13.33, 19p12 and 8p23.3 and overlap partially with the CNVs identified in long-lived Danish or U.S. populations, while the other seven have not been reported previously. These CNV regions encode nineteen known genes, and some of which have been shown to affect aging-related phenotypes such as the shortening of telomere length (ZNF208), the risk of cancer (FOXA1, LAMA5, ZNF716), and vascular and immune-related diseases (ARHGEF10, TOR2A, SH2D3C). In addition, we found several pathways enriched in long-lived genomes, including FOXA1 and FOXA transcription factor networks involved in regulating aging or age-dependent diseases such as cancer. Thus, our study has identified longevity-associated CNV regions and their affected genes and pathways. Our results suggest that the human genome structures such as CNVs might play an important role in determining a long life in human.
Collapse
Affiliation(s)
- Xin Zhao
- BGI Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Liu
- BGI Shenzhen, Shenzhen 518083, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | - Huashuai Chen
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham NC 27710, USA.,Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing 10080, China.,Business School of Xiangtan University, Xiangtan 411105, China
| | - Qing Huo
- BGI Shenzhen, Shenzhen 518083, China
| | | | - Rui Ye
- BGI Shenzhen, Shenzhen 518083, China
| | | | | | | | - Juan Shen
- BGI Shenzhen, Shenzhen 518083, China
| | - Xin Jin
- BGI Shenzhen, Shenzhen 518083, China
| | - Wenwen Li
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Marianne Nygaard
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C 5000, Denmark
| | - Xiao Liu
- BGI Shenzhen, Shenzhen 518083, China
| | - Yong Hou
- BGI Shenzhen, Shenzhen 518083, China
| | - Ting Ni
- State Key Laboratory of Genetics Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lars Bolund
- BGI Shenzhen, Shenzhen 518083, China.,Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - William Gottschalk
- Department of Neurology, Medical Center, Duke University, Durham, NC 27704, USA
| | - Wei Tao
- School of Life Sciences, Peking University, Beijing 100080, China
| | - Jun Gu
- School of Life Sciences, Peking University, Beijing 100080, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Human Aging Research Institute and School of Life Science Nanchang University, Nanchang 330000, China
| | | | - Jian Wang
- BGI Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI Shenzhen, Shenzhen 518083, China
| | - Michael W Lutz
- Department of Neurology, Medical Center, Duke University, Durham, NC 27704, USA
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Zeng
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham NC 27710, USA.,Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing 10080, China
| | - Chao Nie
- BGI Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| |
Collapse
|
3
|
Hauer NN, Popp B, Taher L, Vogl C, Dhandapany PS, Büttner C, Uebe S, Sticht H, Ferrazzi F, Ekici AB, De Luca A, Klinger P, Kraus C, Zweier C, Wiesener A, Jamra RA, Kunstmann E, Rauch A, Wieczorek D, Jung AM, Rohrer TR, Zenker M, Doerr HG, Reis A, Thiel CT. Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature. Eur J Hum Genet 2019; 27:1061-1071. [PMID: 30809043 PMCID: PMC6777496 DOI: 10.1038/s41431-019-0362-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.
Collapse
Affiliation(s)
- Nadine N Hauer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Leila Taher
- Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carina Vogl
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,The Knight Cardiovascular Institute, Departments of Medicine, Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Patrizia Klinger
- Department of Orthopedic Rheumatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Dagmar Wieczorek
- Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany.,Institute of Human-Genetics, Medical Faculty of University Düsseldorf, Düsseldorf, Germany
| | - Anna-Marie Jung
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tilman R Rohrer
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Helmuth-Guenther Doerr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany.
| |
Collapse
|
4
|
Abstract
OBJECTIVES Congenital myasthenic syndromes (CMSs) are a genotypically and phenotypically heterogeneous group of neuromuscular disorders, which have in common an impaired neuromuscular transmission. Since the field of CMSs is steadily expanding, the present review aimed at summarizing and discussing current knowledge and recent advances concerning the etiology, clinical presentation, diagnosis, and treatment of CMSs. METHODS Systematic literature review. RESULTS Currently, mutations in 32 genes are made responsible for autosomal dominant or autosomal recessive CMSs. These mutations concern 8 presynaptic, 4 synaptic, 15 post-synaptic, and 5 glycosilation proteins. These proteins function as ion-channels, enzymes, or structural, signalling, sensor, or transporter proteins. The most common causative genes are CHAT, COLQ, RAPSN, CHRNE, DOK7, and GFPT1. Phenotypically, these mutations manifest as abnormal fatigability or permanent or fluctuating weakness of extra-ocular, facial, bulbar, axial, respiratory, or limb muscles, hypotonia, or developmental delay. Cognitive disability, dysmorphism, neuropathy, or epilepsy are rare. Low- or high-frequency repetitive nerve stimulation may show an abnormal increment or decrement, and SF-EMG an increased jitter or blockings. Most CMSs respond favourably to acetylcholine-esterase inhibitors, 3,4-diamino-pyridine, salbutamol, albuterol, ephedrine, fluoxetine, or atracurium. CONCLUSIONS CMSs are an increasingly recognised group of genetically transmitted defects, which usually respond favorably to drugs enhancing the neuromuscular transmission. CMSs need to be differentiated from neuromuscular disorders due to muscle or nerve dysfunction.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
5
|
Dato S, Soerensen M, De Rango F, Rose G, Christensen K, Christiansen L, Passarino G. The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. Aging Cell 2018; 17:e12755. [PMID: 29577582 PMCID: PMC5946073 DOI: 10.1111/acel.12755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 01/24/2023] Open
Abstract
In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin‐like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46–55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra‐ and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R‐rs12437963 and PTPN1‐rs6067484, TP53‐rs2078486 and ERCC2‐rs50871, TXNRD1‐rs17202060 and TP53‐rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro‐antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA,PTPN1,PARK7, MRE11A). The combination GHSR‐MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP‐SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| | - Mette Soerensen
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography; Institute of Public Health; University of Southern Denmark; Odense C Denmark
- Department of Clinical Genetics; Odense University Hospital; Odense C Denmark
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography; Institute of Public Health; University of Southern Denmark; Odense C Denmark
- Department of Clinical Genetics; Odense University Hospital; Odense C Denmark
| | - Lene Christiansen
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography; Institute of Public Health; University of Southern Denmark; Odense C Denmark
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| |
Collapse
|
6
|
De Luca M. The role of the cell-matrix interface in aging and its interaction with the renin-angiotensin system in the aged vasculature. Mech Ageing Dev 2018; 177:66-73. [PMID: 29626500 DOI: 10.1016/j.mad.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) is an intricate network that provides structural and anchoring support to cells in order to stabilize cell morphology and tissue architecture. The ECM also controls many aspects of the cell's dynamic behavior and fate through its ongoing, bidirectional interaction with cells. These interactions between the cell and components of the surrounding ECM are implicated in several biological processes, including development and adult tissue repair in response to injury, throughout the lifespan of multiple species. The present review gives an overview of the growing evidence that cell-matrix interactions play a pivotal role in the aging process. The focus of the first part of the article is on recent studies using cell-derived decellularized ECM, which strongly suggest that age-related changes in the ECM induce cellular senescence, a well-recognized hallmark of aging. This is followed by a review of findings from genetic studies indicating that changes in genes involved in cell-ECM adhesion and matrix-mediated intracellular signaling cascades affect longevity. Finally, mention is made of novel data proposing an intricate interplay between cell-matrix interactions and the renin-angiotensin system that may have a significant impact on mammalian arterial stiffness with age.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 451-1720 2nd Ave S, Birmingham, AL, 35294-3360, USA.
| |
Collapse
|
7
|
Somatic growth, aging, and longevity. NPJ Aging Mech Dis 2017; 3:14. [PMID: 28970944 PMCID: PMC5622030 DOI: 10.1038/s41514-017-0014-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 02/01/2023] Open
Abstract
Although larger species of animals typically live longer than smaller species, the relationship of body size to longevity within a species is generally opposite. The longevity advantage of smaller individuals can be considerable and is best documented in laboratory mice and in domestic dogs. Importantly, it appears to apply broadly, including humans. It is not known whether theses associations represent causal links between various developmental and physiological mechanisms affecting growth and/or aging. However, variations in growth hormone (GH) signaling are likely involved because GH is a key stimulator of somatic growth, and apparently also exerts various “pro-aging” effects. Mechanisms linking GH, somatic growth, adult body size, aging, and lifespan likely involve target of rapamycin (TOR), particularly one of its signaling complexes, mTORC1, as well as various adjustments in mitochondrial function, energy metabolism, thermogenesis, inflammation, and insulin signaling. Somatic growth, aging, and longevity are also influenced by a variety of hormonal and nutritional signals, and much work will be needed to answer the question of why smaller individuals may be likely to live longer.
Collapse
|