1
|
Kaartinen L, Jääskeläinen T, Sliz E, Yazgeldi Gunaydin G, Wedenoja S, Katayama S, Kajantie E, Rinne V, Heinonen S, Kere J, Merikallio H, Hannele Laivuori submitted on behalf of FINNPEC group, Sliz E, submitted on behalf of FinnGen group, Laivuori H, Hukkanen J. Role of oxysterol 4β-hydroxycholesterol and liver X receptor alleles in pre-eclampsia. Ann Med 2025; 57:2495763. [PMID: 40298034 PMCID: PMC12042236 DOI: 10.1080/07853890.2025.2495763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Liver X receptors (LXRs) are expressed in placenta and may be associated with pre-eclampsia (PE). Oxysterols act as agonists for LXRs. We recently proposed a new blood pressure-regulating circuit with oxysterol 4β-hydroxycholesterol (4βHC) acting as a hypotensive factor via LXRs. MATERIALS AND METHODS This study investigated the association between maternal plasma 4βHC, blood pressure (BP) indices, placental expression of LXR target genes, and patient characteristics using data from the Finnish Genetics of Pre-Eclampsia Consortium (FINNPEC) cohort. Plasma samples of 144 women with PE and 38 healthy pregnant controls as well as 44 PE and 40 control placental samples were available. In addition, genetic data from the FinnGen project was utilized to explore the associations of LXR alleles with PE and pregnancy hypertension. RESULTS There were no significant associations between 4βHC and BP or maternal and perinatal characteristics in FINNPEC cohort. However, plasma 4βHC was inversely correlated with the maternal body mass index. There were no associations with the genetic variants of LXRs with PE in FinnGen. LXR target genes APOD, SCARB1, TGM2, and LPCAT3 were expressed differently between PE and normal pregnancies in placental samples of FINNPEC. CONCLUSIONS Our results demonstrate that plasma 4βHC and genetic LXR variants do not play a major role in PE and BP regulation during pregnancy. However, key LXR target genes involved in lipid metabolism were expressed differently in normal and PE pregnancies. Further research is needed to understand the complexities of oxysterols, LXRs, and their potential contributions to placental function and pregnancy outcomes.
Collapse
Affiliation(s)
- Lassi Kaartinen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Gamze Yazgeldi Gunaydin
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Satu Wedenoja
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eero Kajantie
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Heta Merikallio
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Hannele Laivuori submitted on behalf of FINNPEC group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eeva Sliz
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - submitted on behalf of FinnGen group
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Research Unit of Population Health, University of Oulu, Oulu, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Admescope (Symeres Finland Ltd), Oulu, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Faculty of Medicine and Health Technology, Center for Child, Adolescent, and Maternal Health Research, Tampere University, Tampere, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Janne Hukkanen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
2
|
Pastor FM, de Melo Ocarino N, Silva JF, Reis AMS, Serakides R. Bone development in fetuses with intrauterine growth restriction caused by maternal endocrine-metabolic dysfunctions. Bone 2024; 186:117169. [PMID: 38880170 DOI: 10.1016/j.bone.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Intrauterine growth restriction (IUGR) affects a large proportion of infants, particularly in underdeveloped countries. Among the main causes of IUGR, maternal endocrine-metabolic dysfunction is highlighted, either due to its high incidence or due to the severity of the immediate and mediated changes that these dysfunctions cause in the fetus and the mother. Although the effects of endocrine and metabolic disorders have been widely researched, there are still no reviews that bring together and summarize the effects of these conditions on bone development in cases of IUGR. Therefore, the present literature review was conducted with the aim of discussing bone changes observed in fetuses with IUGR caused by maternal endocrine-metabolic dysfunction. The main endocrine dysfunctions that occur with IUGR include maternal hyperthyroidism, hypothyroidism, and hypoparathyroidism. Diabetes mellitus, hypertensive disorders, and obesity are the most important maternal metabolic dysfunctions that compromise fetal growth. The bone changes reported in the fetus are, for the most part, due to damage to cell proliferation and differentiation, as well as failures in the synthesis and mineralization of the extracellular matrix, which results in shortening and fragility of the bones. Some maternal dysfunctions, such as hyperthyroidism, have been widely studied, whereas conditions such as hypoparathyroidism and gestational hypertensive disorders require further study regarding the mechanisms underlying the development of bone changes. Similarly, there is a gap in the literature regarding changes related to intramembranous ossification, as most published articles only describe changes in endochondral bone formation associated with IUGR. Furthermore, there is a need for more research aimed at elucidating the late postnatal changes that occur in the skeletons of individuals affected by IUGR and their possible relationships with adult diseases, such as osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Felipe Martins Pastor
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Amanda Maria Sena Reis
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Yang W, Ling X, He S, Cui H, Yang Z, An H, Wang L, Zou P, Chen Q, Liu J, Ao L, Cao J. PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per- and polyfluoroalkyl substances: An integrated approach. ENVIRONMENT INTERNATIONAL 2023; 178:108138. [PMID: 37572494 DOI: 10.1016/j.envint.2023.108138] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent and ubiquitous environmental contaminants with well-documented hepatotoxicity. However, the mechanistic linkage between PFAS exposure and non-alcoholic fatty liver disease (NAFLD) remains largely elusive. OBJECTIVES This study aimed to explore PFAS-to-NAFLD link and the relevant molecular mechanisms. METHODS The cross-sectional analyses using National Health and Nutrition Examination Survey (NHANES) data were conducted to investigate the association between PFAS exposure and NAFLD. A combination of in silico toxicological analyses, bioinformatics approaches, animal experiments, and in vitro assays was used to explore the molecular initiating events (MIEs) and key events (KEs) in PFAS-induced hepatic lipid metabolism disorders. RESULTS The cross-sectional analyses with NHANES data revealed the significant association between PFAS exposure and hepatic steatosis/NAFLD. The in silico toxicological analyses showed that PPARα activation induced by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), prototypical representatives of PFAS, is the critical MIE associated with NAFLD-predominant liver diseases. Transcriptome-based bioinformatic annotation and analyses identified that transcriptional upregulation of hepatic acyl-CoA oxidase 1 (ACOX1) in PPARα-regulated peroxisomal β-oxidation pathway was the KE involved with PFOA/PFOS-perturbed hepatic lipid metabolic pathways in humans, mice and rats. The in vivo and in vitro assays further verified that ACOX1-mediated oxidative stress contributed to mitochondrial compromise and lipid accumulation in PFOA/PFOS-exposed mouse hepatocytes, which could be mitigated by co-treatment with ACOX1 inhibitor and mitochondria ROS scavenger. Additionally, we observed that besides PFOA and PFOS, hepatic ACOX1 exhibited good-fit response to short-term exposures of long-chain (C7-C10) perfluoroalkyl carboxylic acids (PFHpA, PFNA, PFDA) and perfluoroalkyl sulfonic acids (PFHpS, PFDS) in human hepatocyte spheroids through benchmark dose (BMD) modeling. CONCLUSION Our study unveils a novel molecular target for PFAS-induced hepatic lipid metabolic disorders, shedding new light on prediction, assessment, and mitigation of PFAS hepatotoxicity.
Collapse
Affiliation(s)
- Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Huihui An
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lihong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
4
|
Liu X, Zheng J, Xin S, Zeng Y, Wu X, Zeng X, Lai H, Zou Y. Whole-exome sequencing expands the roles of novel mutations of organic anion transporting polypeptide, ATP-binding cassette transporter, and receptor genes in intrahepatic cholestasis of pregnancy. Front Genet 2022; 13:941027. [PMID: 36046230 PMCID: PMC9421141 DOI: 10.3389/fgene.2022.941027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Intrahepatic cholestasis of pregnancy (ICP) is associated with a high incidence of fetal morbidity and mortality. Therefore, revealing the mechanisms involved in ICP and its association with fetal complications is very important. Methods: Here, we used a whole-exome sequencing (WES) approach to detect novel mutations of organic anion transporting polypeptide (OTAP) genes, ATP-binding cassette transporter (ABC) genes, and receptor genes associated with ICP in 249 individuals and 1,029 local control individuals. Two available tools, SIFT and PolyPhen-2, were used to predict protein damage. Protein structuremodeling and comparison between the reference and modified protein structures were conducted by SWISS-MODEL and Chimera 1.14rc software, respectively. Results: A total of 5,583 mutations were identified in 82 genes related to bile acid transporters and receptors, of which 62 were novel mutations. These novel mutations were absent in the 1,029 control individuals and three databases, including the 1,000 Genome Project (1000G_ALL), Exome Aggregation Consortium (ExAC), and Single-Nucleotide Polymorphism Database (dbSNP). We classified the 62 novel loci into two groups (damaging and probably damaging) according to the results of SIFT and PolyPhen-2. Out of the 62 novel mutations, 24 were detected in the damaging group. Of these, five novel possibly pathogenic variants were identified that were located in known functional genes, including ABCB4 (Ile377Asn), ABCB11 (Ala588Pro), ABCC2 (Ile681Lys and Met688Thr), and NR1H4 (Tyr149Ter). Moreover, compared to the wild-type protein structure, ABCC2 Ile681Lys and Met688Thr protein structures showed a slight change in the chemical bond lengths of ATP-ligand binding amino acid side chains. The combined 32 clinical data points indicate that the mutation group had a significantly (p = 0.04) lower level of Cl ions than the wild-type group. Particularly, patients with the 24 novel mutations had higher average values of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), total bile acids (TBA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) than patients with the 38 novel mutations in the probably damaging group and the local control individuals. Conclusion: The present study provides new insights into the genetic architecture of ICP involving these novel mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoming Zeng
- *Correspondence: Xiaoming Zeng, ; Hua Lai, ; Yang Zou,
| | - Hua Lai
- *Correspondence: Xiaoming Zeng, ; Hua Lai, ; Yang Zou,
| | - Yang Zou
- *Correspondence: Xiaoming Zeng, ; Hua Lai, ; Yang Zou,
| |
Collapse
|