1
|
Yan Z, Wang L, Yan H, Dong Y, Zhang G, Wu H. Biodegradation potential of polycyclic aromatic hydrocarbons in Taihu Lake sediments. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-9. [PMID: 34319863 DOI: 10.1080/09593330.2021.1961871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACTTo assess the biodegradation potential of polycyclic aromatic hydrocarbons (PAHs) in sediments, sediment microcosms were constructed with sediments collected from six lake zones with different trophic statuses in Taihu Lake. The presence and concentration of PAH-degrading bacteria (PDB) were estimated by the most probable number (MPN) method. After 85 d of aerobic and anaerobic incubation, spiked PAHs (phenanthrene, pyrene, and benzo[a]pyrene) were partially degraded by indigenous sediment microorganisms. Large differences in PAH degradation were observed depending on the molecular size of the PAHs. The PAH removal efficiency in sediments under aerobic conditions was higher than that under anaerobic conditions. MPN analyses showed a higher abundance of degrading microflora in the high PAH-contaminated sites than in the low PAH-contaminated sites. Moreover, the anaerobic PDB populations in the sediments from the six different sites were much higher than those of aerobic PDB. The PAH biodegradation capability in sediments was associated with the geochemical conditions and bacterial populations. PDB showed a broad spatial distribution, thereby implying that they played an important role in the natural attenuation and cycling of PAHs in Taihu Lake. This work indicates that PAHs remain a concern in Taihu Lake sediments and can provide useful information for further bioremediation of PAH-contaminated sediments.
Collapse
Affiliation(s)
- Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Luming Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People's Republic of China
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, People's Republic of China
| | - Haifeng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People's Republic of China
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yibo Dong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People's Republic of China
- College of Urban Construction, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Guoqing Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, People's Republic of China
- College of Urban Construction, Nanjing University of Technology, Nanjing, People's Republic of China
| | - Huifang Wu
- College of Urban Construction, Nanjing University of Technology, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Sachithanandam V, Saravanane N, Chandrasekar K, Karthick P, Lalitha P, Sai Elangovan S, Sudhakar M. Microbial diversity from the continental shelf regions of the Eastern Arabian Sea: A metagenomic approach. Saudi J Biol Sci 2020; 27:2065-2075. [PMID: 32714031 PMCID: PMC7376189 DOI: 10.1016/j.sjbs.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 01/15/2023] Open
Abstract
The marine microbiome is a complex and least-understood habitat, which play a significant role in global biogeochemical cycles. The present study reported the culture-independent assessment of microbial diversity from the Arabian Sea (AS) sediments (from Gujarat to Malabar; at 30 m depth) by using metagenome sequence analysis. Our results elucidated that bacterial communities in the Malabar coastal region are highly diverse than the Gujarat coast. Moreover, Statistical analysis (Spearman rank correlation) showed a significant correlation co-efficient value (r = P < 0.001) between microbial communities and physicochemical parameters (salinity and dissolved oxygen) in the water column. A total of 39 bacterial phyla were recorded from the eastern side of AS, of which six phyla Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Firmicutes, and Planctomycetes were found to be the most dominant group. The most dominant genus from Valapad region (Malabar Coast) was found to be Halomonas sp., while other regions were dominated with Psychrobacter pulmonis. The subsequent Principal Coordinate Analysis (PCoA) showed 99.53% variance, which suggests that, highly distinct microbial communities at Valapad (Malabar Coast) sampling location than other sites. Moreover, the microbial metabolic activity analysis revealed the important functions of microbial communities in the AS are hydrocarbon degradation, polymer degradation, nutrient oxidation and sulphate reduction (biodegradation process). Further extended studies are needed to be carried out for better understanding the functional diversity of microbial communities from the marine sediments.
Collapse
Affiliation(s)
- V Sachithanandam
- Department of Ocean Studies and Marine Biology, Pondicherry University, Andaman Campus, Port Blair 744 112, India.,National Centre for Sustainable Coastal Management, Ministry of Environment, Forest & Climate Change, Chennai 600 025, India
| | - N Saravanane
- Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India, Kochi 682 037, India
| | - K Chandrasekar
- Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India, Kochi 682 037, India
| | - P Karthick
- Department of Ocean Studies and Marine Biology, Pondicherry University, Andaman Campus, Port Blair 744 112, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest & Climate Change, Chennai 600 025, India
| | - S Sai Elangovan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa, India
| | - M Sudhakar
- Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India, Kochi 682 037, India
| |
Collapse
|
3
|
Vasconcelos MRS, Vieira GAL, Otero IVR, Bonugli-Santos RC, Rodrigues MVN, Rehder VLG, Ferro M, Boaventura S, Bacci M, Sette LD. Pyrene degradation by marine-derived ascomycete: process optimization, toxicity, and metabolic analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12412-12424. [PMID: 30847811 DOI: 10.1007/s11356-019-04518-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Marine-derived fungi are relevant genetic resources for bioremediation of saline environments/processes. Among the five fungi recovered from marine sponges able to degrade pyrene (Py) and benzo[a]pyrene (BaP), Tolypocladium sp. strain CBMAI 1346 and Xylaria sp. CBMAI 1464 presented the best removal rates of Py and BaP, respectively. Since the decrease in BaP was related to mycelial adsorption, a combined strategy was applied for the investigation of Py degradation by the fungus Tolypocladium sp. CBMAI 1346. The selected fungus was able to degrade about 95% of Py after 7 days of incubation (optimized conditions), generating metabolites different from the ones found before optimization. Metabolites and transcriptomic data revealed that the degradation occurred mainly by the cytochrome P450 pathway. Putative monooxygenases and dioxygenases found in the transcriptome may play an important role. After 21 days of degradation, no toxicity was found in the optimized culture conditions. The findings from the present study highlight the potential of marine-derived fungi to degrade environmental pollutants and convey innovative information related to the metabolism of pyrene.
Collapse
Affiliation(s)
- Maria R S Vasconcelos
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Gabriela A L Vieira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Igor V R Otero
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Rafaella C Bonugli-Santos
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
- Latin American Institute of Life and Nature Sciences, Federal University of Latin American Integration (UNILA), Paraná, PR, Brazil
| | - Marili V N Rodrigues
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Vera L G Rehder
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Milene Ferro
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Sinésio Boaventura
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Maurício Bacci
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara D Sette
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil.
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 24A, 1515 - Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
4
|
Das P, Mukherjee S, Sen R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. CHEMOSPHERE 2008; 72:1229-1234. [PMID: 18565569 DOI: 10.1016/j.chemosphere.2008.05.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/21/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) are organic pollutants mostly derived from the processing and combustion of fossil fuels and cause human health hazards. In the present study a marine biosurfactant producing strain of Bacillus circulans was used to increase the bioavailability and consequent degradation of a model polyaromatic hydrocarbon, anthracene. Although the organism could not utilize anthracene as the sole carbon source, it showed better growth and biosurfactant production in an anthracene supplemented glycerol mineral salts medium (AGlyMSM) compared to a normal glycerol mineral salts medium (GlyMSM). The biosurfactant product showed high degree of emulsification of various hydrocarbons. Analysis by gas chromatography (GC), high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) showed that the biosurfactant could effectively entrap and solubilize PAH. Thin layer chromatographic analysis showed that anthracene was utilized as a carbon substrate for the production of biosurfactant. Thus organic pollutant anthracene was metabolized and converted to biosurfactants facilitating its own bioremediation.
Collapse
Affiliation(s)
- Palashpriya Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | | | |
Collapse
|
5
|
Martins M, Ferreira AM, Vale C. The influence of Sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal). CHEMOSPHERE 2008; 71:1599-1606. [PMID: 18068208 DOI: 10.1016/j.chemosphere.2007.10.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/19/2007] [Accepted: 10/26/2007] [Indexed: 05/25/2023]
Abstract
Depth concentration profiles of PAHs, organic carbon and dissolved oxygen in non-colonised sediments and sediments colonised by Sarcocornia fruticosa from Mitrena salt marsh (Sado, Portugal) were determined in November 2004 and April 2005. Belowground biomass and PAH levels in below and aboveground material were also determined. In both periods, colonised sediments were oxygenated until 15-cm, rich in organic carbon (max 4.4%) and presented much higher PAH concentrations (max. 7.1 microg g(-1)) than non-colonised sediments (max. 0.55 microg g(-1)). Rooting sediments contained the highest PAH concentrations. The five- and six-ring compounds accounted to 50-75% of the total PAHs in colonised sediments, while only to 30% in non-colonised sediments. The elevated concentrations of PAHs in colonised sediments may be attributed to the transfer of dissolved PAH compounds towards the roots as plant uptake water and subsequent sequestration onto organically rich particles. A phase-partitioning mechanism probably explains the higher retention of the heavier PAHs. In addition oxygenated conditions of the rooting sediments favour the degradation of the lighter PAHs and explain the elevated proportion of the heavier compounds. Below and aboveground materials presented lower PAH concentrations (0.18-0.38 microg g(-1)) than colonised sediments. Only 3- and 4-PAHs were quantified in aboveground material, reflecting either preferential translocation of lighter compounds from roots or atmospheric deposition.
Collapse
Affiliation(s)
- Marta Martins
- IPIMAR/National Institute of Biological Resources, Avenida de Brasilia, 1449-006 Lisboa, Portugal
| | | | | |
Collapse
|
6
|
Preliminary analysis of bacterial diversity associated with the Porites coral from the Arabian sea. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-006-9315-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Gilbert E, Dodoo DK, Okai-Sam F, Essuman K, Quagraine EK. Characterization and source assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in sediments of the Fosu Lagoon, Ghana. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2006; 41:2747-75. [PMID: 17114105 DOI: 10.1080/10934520600966649] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The first results ever obtained on polycyclic aromatic hydrocarbon (PAHs) concentrations in the Fosu lagoon surface sediments are presented together with corresponding heavy metal (Fe, Mn, Cd, Zn and Ni) concentrations. Samples collected on a monthly basis from November 2003-April 2004 (Heavy metals) and December 2003-January 2004 (PAHs) at 8 locations, representing different anthropogenic sources of contamination to the lagoon, were analyzed. Concentrations of Cd and Ni in the lagoon sediment suggest greater contamination to the lagoon from industrial activities in the vicinity of the lagoon; 50% of the sediment samples exceeded some established sediment Cd guidelines for the protection of aquatic lives. Then, 15 PAHs were detected among the sediments from the different locations and the compositional pattern in decreasing order was 3-ring > 5-ring > 4-ring > 6-ring > 2-ring PAH compounds. Sigma PAH concentrations in the sediment samples ranged from 254 to 558 mg/kg, with a mean of 359.4 mg/kg. Two distinct areas were identified to be a major source of anthropogenic load of both heavy metals and PAH; the mechanical shop in the northeastern sector of the lagoon is the main location for the input of Cd and it's associated PAH compounds (e.g., acenapthylene, acenaphthene, naphthalene and benzo[a]fluoranthene) and to a lesser extent Ni. Both combustion and petroleum sources may account for PAH loads from this area. The residential area in the northern sector is responsible for high loads of Mn and its associated PAH compounds (e.g., phenanthrene, benzo[a]pyrene and anthracene). These chemicals seem to enter the lagoon mainly by the combustion of especially wood or coal.
Collapse
Affiliation(s)
- E Gilbert
- Department of Chemistry, University of Cape Coast, Cape Coast, Ghana
| | | | | | | | | |
Collapse
|