1
|
Figueiredo MJ, Venâncio C, Cardoso P, Marques PAAP, Figueira E, Pires A. Potential advantage of invasive estuarine worms over native species under exposure to relevant concentrations of graphene oxide: Behavioral and biochemical insights. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106821. [PMID: 39489023 DOI: 10.1016/j.marenvres.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Technological development using graphene oxide (GO) has increased in the last years, leading to the release of this contaminant to final sinks, such as estuaries. Due to their potential to flocculate and deposit when interacting with high ionic strength media, GO poses a threat, especially to benthic organisms like polychaetes. In addition to chemical contamination, estuaries also face a severe threat from invasive species, which can cause irreversible damage to ecosystems. The combination of abiotic and biotic stressors may work together on native species, decreasing their resilience. Thus, this study aims to assess the effects of an abiotic stressor, GO nanosheets (0.001, 0.01, 0.1, 1, 10 mg GO/Kg dw) on Hediste diversicolor (native species) and Arenicola marina (invasive species) through several behavioral assays and biochemical markers. The impact of invasive species A. marina (biotic factor) on H. diversicolor avoidance behavior was also evaluated. Obtained results demonstrated that H. diversicolor fled from lower GO contamination compartments to higher ones and that exposure to increased GO concentrations negatively impacted its burrowing activity. They were unable to escape from higher contamination compartments, but at the highest concentrations, the bioturbation activity was significantly higher, which may indicate that H. diversicolor tended to dwell deeper in the sediment. A. marina showed an escape behavior from compartments with higher GO concentrations. Additionally, this species' bioturbation activity significantly decreased when exposed to GO. Moreover, avoidance tests demonstrated that the presence of A. marina affected the behavior of H. diversicolor. Regarding oxidative stress, H. diversicolor seems to be more impacted than A. marina, since Lipid peroxidation levels were higher in all GO concentrations and Superoxide dismutase activity significantly increased in the lowest GO levels. Overall, H. diversicolor spatial distribution may be severely constrained under abiotic and biotic stress, while A. marina's higher foraging activity may promote its propagation in the estuary. Behavioral tests, combined with biochemical markers have shown to be relevant tools for the development of more environmental-realistic assessment and monitoring frameworks for estuaries.
Collapse
Affiliation(s)
- Maria João Figueiredo
- Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Cátia Venâncio
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Paulo Cardoso
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA) & Department of Mechanics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Neves B, Oliveira M, Frazão C, Almeida M, Pinto RJB, Figueira E, Pires A. The Role of Life Stages in the Sensitivity of Hediste diversicolor to Nanoplastics: A Case Study with Poly(Methyl)Methacrylate (PMMA). TOXICS 2024; 12:352. [PMID: 38787131 PMCID: PMC11126148 DOI: 10.3390/toxics12050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The presence of plastic particles in oceans has been recognized as a major environmental concern. The decrease in particle size increases their ability to directly interact with biota, with particles in the nanometer size range (nanoplastics-NPs) displaying a higher ability to penetrate biological membranes, which increases with the decrease in particle size. This study aimed to evaluate the role of life stages in the effects of poly(methyl)methacrylate (PMMA) NPs on the polychaete Hediste diversicolor, a key species in the marine food web and nutrient cycle. Thus, behavioral (burrowing activity in clean and spiked sediment) and biochemical endpoints (neurotransmission, energy reserves, antioxidant defenses, and oxidative damage) were assessed in juvenile and adult organisms after 10 days of exposure to spiked sediment (between 0.5 and 128 mg PMMA NPs/Kg sediment). Overall, the results show that H. diversicolor is sensitive to the presence of PMMA NPs. In juveniles, exposed organisms took longer to burrow in sediment, with significant differences from the controls being observed at all tested concentrations when the test was performed with clean sediment, whereas in PMMA NP-spiked sediment, effects were only found at the concentrations 8, 32, and 128 mg PMMA NPs/Kg sediment. Adults displayed lower sensitivity, with differences to controls being found, for both sediment types, at 8, 32, and 128 mg PMMA NPs/Kg sediment. In terms of Acetylcholinesterase, used as a marker of effects on neurotransmission, juveniles and adults displayed opposite trends, with exposed juveniles displaying increased activity (suggesting apoptosis), whereas in adults, overall decreased activity was found. Energy-related parameters revealed a generally similar pattern (increase in exposed organisms) and higher sensitivity in juveniles (significant effects even at the lower concentrations). NPs also demonstrated the ability to increase antioxidant defenses (higher in juveniles), with oxidative damage only being found in terms of protein carbonylation (all tested NPs conditions) in juveniles. Overall, the data reveal the potential of PMMA NPs to affect behavior and induce toxic effects in H. diversicolor, with greater effects in juveniles.
Collapse
Affiliation(s)
- Beatriz Neves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Carolina Frazão
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Mónica Almeida
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Ricardo J. B. Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Adília Pires
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| |
Collapse
|
3
|
Vellani V, Cuccaro A, Oliva M, Pretti C, Renzi M. Assessing combined effects of long-term exposure to copper and marine heatwaves on the reef-forming serpulid Ficopomatus enigmaticus through a biomarker approach. MARINE POLLUTION BULLETIN 2024; 201:116269. [PMID: 38531206 DOI: 10.1016/j.marpolbul.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Sessile benthic organisms can be affected by global changes and local pressures, such as metal pollution, that can lead to damages at different levels of biological organization. Effects of exposure to marine heatwaves (MHWs) alone and in combination with environmentally relevant concentration of copper (Cu) were evaluated in the reef-forming tubeworm Ficopomatus enigmaticus using a multi-biomarker approach. Biomarkers of cell membrane damage, enzymatic antioxidant defences, metabolic activity, neurotoxicity, and DNA integrity were analyzed. The exposure to Cu alone did not produce any significant effect. Exposure to MHWs alone produced effects only on metabolic activity (increase of glutathione S-transferase) and energy reserves (decrease in protein content). MHWs in combination with copper was the condition that most influenced the status of cell homeostasis of exposed F. enigmaticus. The combination of MHWs plus Cu exposure induced increase of protein carbonylation and glutathione S-transferase activity, decrease in protein/carbohydrate content and carboxylesterase activity. This study on a reef-forming organism highlighted the additive effect of a climate change-related stressor to metals pollution of marine and brackish waters.
Collapse
Affiliation(s)
- Verdiana Vellani
- Department of Life Sciences, University of Trieste, 34127 Trieste, TS, Italy; CoNiSMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Alessia Cuccaro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology of Leghorn 'G. Bacci', 57128 Leghorn, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn 'G. Bacci', 57128 Leghorn, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI 56122, Italy.
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127 Trieste, TS, Italy; CoNiSMa, Piazzale Flaminio 9, 00196 Roma, Italy
| |
Collapse
|
4
|
Oliva M, De Marchi L, Cuccaro A, Fumagalli G, Freitas R, Fontana N, Raugi M, Barmada S, Pretti C. Introducing energy into marine environments: A lab-scale static magnetic field submarine cable simulation and its effects on sperm and larval development on a reef forming serpulid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121625. [PMID: 37085101 DOI: 10.1016/j.envpol.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Non-chemical sources of anthropogenic environmental stress, such as artificial lights, noise and magnetic fields, are still an underestimate factor that may affect the wildlife. Marine environments are constantly subjected to these kinds of stress, especially nearby to urbanized coastal areas. In the present work, the effect of static magnetic fields, associated with submerged electric cables, was evaluated in gametes and early life stages of a serpulid polychaete, namely Ficopomatus enigmaticus. Specifically, biochemical/physiological impairments of sperm, fertilization rate inhibition and incorrect larval development were assessed. We evaluated differences between two selected magnetic field induction values (0.5 and 1 mT) along a range of exposure times (30 min-48 h), for a sound evaluation on this species. We found that a magnetic induction of 1 mT, a typical value that can be found at distance of tens of cm from a submerged cable, may be considered a biologically and ecologically relevant for sessile organisms and for coastal environments more generally. This value exerted statistically significant effects on membranes, DNA integrity, kinetic parameters and mitochondrial activity of sperm cells. Moreover, a significant reduction in fertilization rate was observed in sperm exposed to the same magnetic induction level (1 mT) for 3 h, compared to controls. Regarding early larval stages, 48-h exposure did not affect the correct development. Our results represent a starting point for a future focus of research on magnetic field effects on early life stages of aquatic invertebrates, using model species as representative for reef-forming/encrusting organisms and ecological indicators of soft sediment quality.
Collapse
Affiliation(s)
- Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy.
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy.
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Nunzia Fontana
- Department of Energy, Systems, Territory and Construction Engineering of Organization, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy.
| | - Marco Raugi
- Department of Energy, Systems, Territory and Construction Engineering of Organization, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy.
| | - Sami Barmada
- Department of Energy, Systems, Territory and Construction Engineering of Organization, University of Pisa, Largo Lucio Lazzarino, 56122, Pisa, Italy.
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| |
Collapse
|
5
|
Sturla Lompré J, De Marchi L, Pinto J, Soares AMVM, Pretti C, Chielini F, Pereira E, Freitas R. Effects of Carbon Nanoparticles and Chromium Combined Exposure in Native ( Ruditapes decussatus) and Invasive ( Ruditapes philippinarum) Clams. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040690. [PMID: 36839058 PMCID: PMC9963187 DOI: 10.3390/nano13040690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 05/23/2023]
Abstract
Studies have described the occurrence of nanoparticles (NPs) in aquatic ecosystems, with particular attention to the widely commercialized carbon nanotubes (CNTs). Their presence in the environment raises concerns, especially regarding their toxicity when co-occurring with other pollutants such as metals. In the present study, changes to the metabolic capacity, oxidative, and neurologic status were evaluated in the presence of carboxylated multi-walled CNTs and chromium (Cr(III)) using two of the most ecologically and economically relevant filter feeder organisms: the clam species Ruditapes decussatus and R. philippinarum. Results indicated that although Cr, either alone or in combination with CNTs, was found in a similar concentration level in both species, a species-specific Cr accumulation was observed, with higher values in R. decussatus in comparison with R. philippinarum. Inhibition of antioxidant defenses and neurotoxic effects were detected only in R. philippinarum. The interaction between contaminants seems to have no effect in terms of antioxidant enzyme activities and neuro status. Nevertheless, synergistic activation of responses to both contaminants may have altered the metabolic capacity of bivalves, particularly evident in R. decussatus. While both clams are tolerant to both contaminants (alone and together), they showed a relevant accumulation capacity, which may represent a possible contaminant transfer to humans.
Collapse
Affiliation(s)
- Julieta Sturla Lompré
- Center for the Study of Marine Systems (CESIMAR-CONICET), National Patagonian Center, Bv. Almte Brown 2915, Puerto Madryn 9120, Argentina
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lucia De Marchi
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn “G. Bacci”, 57128 Livorno, Italy
| | - Federica Chielini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Oliva M, Martinelli E, Guazzelli E, Cuccaro A, De Marchi L, Fumagalli G, Monni G, Vasarri M, Degl'Innocenti D, Pretti C. Posidonia oceanica (L.) (Delile, 1813) extracts as a potential booster biocide in fouling-release coatings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18480-18490. [PMID: 36215022 DOI: 10.1007/s11356-022-23460-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Since the banning of tributyltin, the addition of inorganic (metal oxides) and organic (pesticides, herbicides) biocides in antifouling paint has represented an unavoidable step to counteract biofouling and the resulting biodeterioration of submerged surfaces. Therefore, the development of new methods that balance antifouling efficacy with environmental impact has become a topic of great importance. Among several proposed strategies, natural extracts may represent one of the most suitable alternatives to the widely used toxic biocides. Posidonia oceanica is one of the most representative organisms of the Mediterranean Sea and contains hundreds of bioactive compounds. In this study, we prepared, characterized, and assessed a hydroalcoholic extract of P. oceanica and then compared it to three model species. Together, these four species belong to relevant groups of biofoulers: bacteria (Aliivibrio fischeri), diatoms (Phaeodactylum tricornutum), and serpulid polychaetes (Ficopomatus enigmaticus). We also added the same P. oceanica extract to a PDMS-based coating formula. We tested this coating agent with Navicula salinicola and Ficopomatus enigmaticus to evaluate both its biocidal performance and its antifouling properties. Our results indicate that our P. oceanica extract provides suitable levels of protection against all the tested organisms and significantly reduces adhesion of N. salinicola cells and facilitates their release in low-intensity waterflows.
Collapse
Affiliation(s)
- Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy.
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Elisa Guazzelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Donatella Degl'Innocenti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, 57128, Livorno, Italy
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| |
Collapse
|
7
|
Cuccaro A, Oliva M, De Marchi L, Vieira Sanches M, Bontà Pittaluga G, Meucci V, Battaglia F, Puppi D, Freitas R, Pretti C. Biochemical response of Ficopomatus enigmaticus adults after exposure to organic and inorganic UV filters. MARINE POLLUTION BULLETIN 2022; 178:113601. [PMID: 35367697 DOI: 10.1016/j.marpolbul.2022.113601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
With the increase of UV filters usage and consequent release into aquatic environments, the concerns about their potential ecological risks are also increasing. According to this, in the present study, adult polychaetes of the species Ficopomatus enigmaticus were chronically exposed to three concentrations (0.01, 0.1 and 0.5 mg/L) of organic and inorganic filters (Ethylhexyl methoxycinnamate (EHMC) and nanoparticulate Zinc oxide (nZnO), respectively) in order to analyse biochemical responses related to cellular damage, antioxidant defence, biotransformation mechanisms and, lastly, neurotoxicity. Despite major lipid peroxidation caused by EHMC was observed, both UV filters have produced the same response patterns. In details, a clear concentration-dependent activation of glutathione S-transferases and a significant decrease of acetylcholinesterase levels defined an important neurotoxic effect was observed for both contaminants. These results become important to expand the limited scientific literature on biochemical responses of marine and brackish water invertebrates to organic and inorganic UV filters.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Matteo Oliva
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy.
| | - Lucia De Marchi
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | | | - Gianluca Bontà Pittaluga
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Valentina Meucci
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, Pisa, Italy
| | - Federica Battaglia
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, Pisa, Italy
| | - Dario Puppi
- Dipartimento di Chimica & Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy; Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, Pisa, Italy
| |
Collapse
|
8
|
Pires A, Figueira E, Silva MSS, Sá C, Marques PAAP. Effects of graphene oxide nanosheets in the polychaete Hediste diversicolor: Behavioural, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118869. [PMID: 35063544 DOI: 10.1016/j.envpol.2022.118869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources - soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.
Collapse
Affiliation(s)
- Adília Pires
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M S S Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carina Sá
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA) & Department of Mechanics, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Sturla Lompré J, Moleiro P, De Marchi L, Soares AMVM, Pretti C, Chielini F, Pereira E, Freitas R. Bioaccumulation and ecotoxicological responses of clams exposed to terbium and carbon nanotubes: Comparison between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146914. [PMID: 33901954 DOI: 10.1016/j.scitotenv.2021.146914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In the last decades the use of rare earth elements (REEs) increased exponentially, including Terbium (Tb) which has been widely used in newly developed electronic devices. Also, the production and application of nanoparticles has been growing, being Carbon Nanotubes (CNTs) among the most commonly used. Accompanying such development patterns, emissions towards the aquatic environments are highly probable, with scarce information regarding the potential toxicity of these pollutants to inhabiting species, especially considering their mixture. In the present study the effects of Tb and CNTs exposure (acting alone or as a mixture) on native and invasive clams' species (Ruditapes decussatus and Ruditapes philippinarum, respectively) were evaluated, assessing clams' accumulation and metabolic capacities, oxidative status as well neurotoxic impacts. Results obtained after a 28-days exposure period showed that the accumulation of Tb in both species was not affected by the presence of the CNTs and similar Tb concentrations were found in both species. The effects caused by Tb and CNTs, acting alone or as a mixture induced greater alterations in R. philippinarum antioxidant capacity in comparison to native R. decussatus, but no cellular damages were observed in both species. Nevertheless, although metabolic impairment was only observed in clams exposed to Tb, loss of redox balance and neurotoxicity were evidenced by both species regardless the exposure treatment. These findings highlight the potential impacts caused by CNTs and Tb, which may affect clams' normal physiological functioning, impairing their reproduction and growth capacities. The obtained results point out the need for further investigation considering the mixture of pollutants.
Collapse
Affiliation(s)
- Julieta Sturla Lompré
- Center for the Study of Marine Systems (CESIMAR-CONICET), National Patagonian Center, Bv. Almte Brown 2915, Puerto Madryn, Argentina; Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Moleiro
- Department de Chemistry, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chielini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Eduarda Pereira
- Department de Chemistry and REQUIMTE, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Jiang Y, Gong H, Jiang S, She C, Cao Y. Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141384. [PMID: 32823226 DOI: 10.1016/j.scitotenv.2020.141384] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) might induce the dysfunction of neuronal NO synthase (nNOS) and impair the function of brains. But to the best of our knowledge, this conclusion was made by using laboratory animals or conventional nerve cell cultures; however, these models might not reflect the complex conditions of human brains. Recently, the development of 3D brain organoids (also known as organotypic cultures) derived from human induced pluripotent stem cells (iPSCs) provides a platform to investigate the behaviors of human brains in vitro. In this study, we investigated the toxicity of MWCNTs to 3D brain organoids which expressed the cortical layer markers. It was shown that MWCNTs induced cytotoxicity to 3D brain organoids but not in dose-dependent manner. Exposure to high level of MWCNTs (64 μg/mL) reduced the levels of intracellular NO but increased superoxide. As the mechanism, 64 μg/mL MWCNTs significantly reduced the protein level of nNOS. The nNOS regulators nuclear factor kappa-B (NF-κB) proteins were significantly induced by MWCNTs, whereas Kruppel-like factor 4 (KLF4) proteins were reduced particularly after exposure to low level of MWCNTs (16 μg/mL). The results from fluorescence micro-optical sectioning tomography (MOST) confirmed the decrease of nNOS proteins, not only at the out-layers that directly contacted MWCNTs, but also at the inner-layers. Combined, our results suggested that MWCNTs could decrease nNOS activity by inducing oxidative stress and modulating NF-κB-KLF4 pathway. This study also showed the potential of 3D brain organoids in mechanism-based toxicology studies.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province and Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua 418008, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Housheng Gong
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province and Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua 418008, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shaohua Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaowen She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province and Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua 418008, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
11
|
Oliva M, De Marchi L, Vieira Sanches M, Pires A, Cuccaro A, Baratti M, Chiellini F, Morelli A, Freitas R, Pretti C. Atlantic and Mediterranean populations of the widespread serpulid Ficopomatus enigmaticus: Developmental responses to carbon nanotubes. MARINE POLLUTION BULLETIN 2020; 156:111265. [PMID: 32510406 DOI: 10.1016/j.marpolbul.2020.111265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Ficopomatus enigmaticus was adopted as model species for ecotoxicological bioassay, with its larval development as endpoint. Two different populations of the same species, collected in areas far from each other (Mediterranean Sea and Atlantic Ocean), were exposed to multi-walled carbon nanotubes, a class of emerging pollutants with a constantly increasing relevance in the landscape of nanomaterials production. Moreover, a molecular analysis based on Cyt b amplification and sequencing, was carried out to confirm that both populations belong to the same species. The aim of the present work was to strengthen existing results about F. enigmaticus relevance in ecotoxicological bioassays, adding the variable of population effect. For both populations the concentration-response curve of effect at different toxicant concentrations was similar and, at certain concentrations, overlapping, confirming the ecological relevance of the assay. These results posed an interesting acceptance on the introduction of this species as model in ecotoxicological bioassay scenery, underlining the relevance of a widespread wild species to compare effects of chemicals and environmental samples over large distances using the same bioassay.
Collapse
Affiliation(s)
- M Oliva
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - L De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - M Vieira Sanches
- Departamento de Biologia & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Pires
- Departamento de Biologia & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A Cuccaro
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Departamento de Biologia & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Baratti
- National Research Council - IBBR, Via Madonna del Piano, 10, Polo Scientifico, 50019 Florence, Italy
| | - F Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - A Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - R Freitas
- Departamento de Biologia & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, Via Livornese lato monte, 56122 San Piero a Grado (PI), Italy.
| |
Collapse
|
12
|
The Advances in Biomedical Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unique chemical, physical, and biological features of carbon nanotubes make them an ideal candidate for myriad applications in industry and biomedicine. Carbon nanotubes have excellent electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion, nano-size, and a high surface area, which can be tailored and functionalized on demand. This review discusses the progress and main fields of bio-medical applications of carbon nanotubes based on recently-published reports. It encompasses the synthesis of carbon nanotubes and their application for bio-sensing, cancer treatment, hyperthermia induction, antibacterial therapy, and tissue engineering. Other areas of carbon nanotube applications were out of the scope of this review. Special attention has been paid to the problem of the toxicity of carbon nanotubes.
Collapse
|
13
|
De Marchi L, Neto V, Pretti C, Chiellini F, Morelli A, Soares AMVM, Figueira E, Freitas R. The influence of Climate Change on the fate and behavior of different carbon nanotubes materials and implication to estuarine invertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:103-115. [PMID: 30797982 DOI: 10.1016/j.cbpc.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
The widespread use of Carbon nanotubes (CNTs) has been increasing exponentially, leading to a significant potential release into the environment. Nevertheless, the toxic effects of CNTs in natural aquatic systems are related to their ability to interact with abiotic compounds. Considering that salinity variations are one of the main challenges in the environment and thus may influence the behavior and toxicity of CNTs, a laboratory experiment was performed exposing the tube-building polychaete Diopatra neapolitana (Delle Chiaje 1841) for 28 days to pristine multi-walled carbon nanotube (MWCNTs) and carboxylated MWCNTs, maintained at control salinity 28 and low salinity 21. An innovative approach based on thermogravimetric analysis (TGA) was adopted for the first time to assess the presence of MWCNTs aggregates in the organisms. Both CNTs generated toxic impacts in terms of regenerative capacity, energy reserves and metabolic capacity as well as oxidative and neuro status, however greater toxic impacts were observed in polychaetes exposed to carboxylated MWCNTs. Moreover, both CNTs maintained under control salinity (28) generated higher toxic impacts in the polychaetes compared to individuals maintained under low salinity (21), indicating that exposed polychaetes tend to be more sensitive to the alteration induced by salinity variations on the chemical behavior of both MWCNTs in comparison to salt stress.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|