1
|
Chen L, Pan Y, Cheng J, Zhu X, Chu W, Meng YY, Bin S, Zhang J. Characterization of myosin heavy chain (MYH) genes and their differential expression in white and red muscles of Chinese perch, Siniperca chuatsi. Int J Biol Macromol 2023; 250:125907. [PMID: 37482155 DOI: 10.1016/j.ijbiomac.2023.125907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Fish skeletal muscle is composed of two anatomically and functionally different fiber layers, white or fast and red or slow muscles. Myosin, the major structural protein of fish skeletal muscle, contains multiple myosin heavy chain (MYH) isoforms involved in the high plasticity of muscle in response to varying functional demands and/or environmental changes. In this study, we comparatively assayed the cellular and ultrastructural feature of white and red skeletal muscles. Then, a total of 28 class II myosin heavy chain genes were identified in by searching the Chinese perch genome database. Among them, 14 genes code for the fast-muscle-type myosin heavy chain, and 7 genes code for the slow-muscle-type myosin heavy chain. Further, the different isoform gene structures, function domains, phylogenetic relations, and muscle-fiber type-specific expression were characterized. This is the first systematic work on the molecular characterization of class II myosin heavy chain isoforms and the differential analysis of their expression in red and white muscle tissues in Chinese perch Siniperca chuatsi. Our work provided valuable information for a better understanding of myh genes and their molecular characteristics, and the correlations of multiple myosin isoforms with potential functions in response to varying functional demands and/or environmental changes.
Collapse
Affiliation(s)
- Lin Chen
- College of Biological and Chemical Engineering, Changsha University, Hunan 410003, China
| | - Yaxong Pan
- College of Biological and Chemical Engineering, Changsha University, Hunan 410003, China
| | - Jia Cheng
- College of Biological and Chemical Engineering, Changsha University, Hunan 410003, China
| | - Xin Zhu
- College of Biological and Chemical Engineering, Changsha University, Hunan 410003, China
| | - Wuying Chu
- College of Biological and Chemical Engineering, Changsha University, Hunan 410003, China
| | - Yang Yang Meng
- College of Biological and Chemical Engineering, Changsha University, Hunan 410003, China
| | - Shiyu Bin
- Department of Biology, Guangxi Normal University, Guilin 419034, Guangxi, China.
| | - Jianshe Zhang
- College of Biological and Chemical Engineering, Changsha University, Hunan 410003, China.
| |
Collapse
|
2
|
Tan C, Xu Q, Chen N, He Q, Sun Q, Yu Z, Zeng W. Effects of tea polyphenols on the quality of common carp (
Cyprinus carpio
) meat during freezing process and its action mechanism. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chong Tan
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Qian‐Da Xu
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu PR China
| | - Qun Sun
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu PR China
| | - Zhi‐Long Yu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences McGill University QC Canada
| | - Wei‐Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu PR China
| |
Collapse
|
3
|
Genome-Wide Identification, Characterization and Expression Profiling of myosin Family Genes in Sebastes schlegelii. Genes (Basel) 2021; 12:genes12060808. [PMID: 34070681 PMCID: PMC8228858 DOI: 10.3390/genes12060808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Myosins are important eukaryotic motor proteins that bind actin and utilize the energy of ATP hydrolysis to perform a broad range of functions such as muscle contraction, cell migration, cytokinesis, and intracellular trafficking. However, the characterization and function of myosin is poorly studied in teleost fish. In this study, we identified 60 myosin family genes in a marine teleost, black rockfish (Sebastes schlegelii), and further characterized their expression patterns. myosin showed divergent expression patterns in adult tissues, indicating they are involved in different types and compositions of muscle fibers. Among 12 subfamilies, S. schlegelii myo2 subfamily was significantly expanded, which was driven by tandem duplication events. The up-regulation of five representative genes of myo2 in the skeletal muscle during fast-growth stages of juvenile and adult S. schlegelii revealed their active role in skeletal muscle fiber synthesis. Moreover, the expression regulation of myosin during the process of myoblast differentiation in vitro suggested that they contribute to skeletal muscle growth by involvement of both myoblast proliferation and differentiation. Taken together, our work characterized myosin genes systemically and demonstrated their diverse functions in a marine teleost species. This lays foundation for the further studies of muscle growth regulation and molecular mechanisms of indeterminate skeletal muscle growth of large teleost fishes.
Collapse
|
4
|
Ikeda D, Koyama H, Mizusawa N, Kan-no N, Tan E, Asakawa S, Watabe S. Global gene expression analysis of the muscle tissues of medaka acclimated to low and high environmental temperatures. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:19-28. [DOI: 10.1016/j.cbd.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/14/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023]
|
5
|
Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family. PLoS One 2013; 8:e85500. [PMID: 24376886 PMCID: PMC3869912 DOI: 10.1371/journal.pone.0085500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.
Collapse
|
6
|
Asaduzzaman M, Kinoshita S, Bhuiyan SS, Asakawa S, Watabe S. Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: transient and transgenic analysis of torafugu MYH(M86-2) promoter in zebrafish embryos. Exp Cell Res 2012; 319:820-37. [PMID: 23237989 DOI: 10.1016/j.yexcr.2012.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 12/18/2022]
Abstract
The myosin heavy chain gene, MYHM86-2, exhibited restricted expression in slow muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional mechanisms involved in its expression are still ambiguous. The present study is the first extensive analysis of slow muscle-specific MYHM86-2 promoter in fish for identifying the cis-elements that are crucial for its expression. Combining both transient transfection and transgenic approaches, we demonstrated that the 2614bp 5'-flanking sequences of MYHM86-2 contain a sufficient promoter activity to drive gene expression specific to superficial slow muscle fibers. By cyclopamine treatment, we also demonstrated that the differentiation of such superficial slow muscle fibers depends on hedgehog signaling activity. The deletion analyses defined an upstream fragment necessary for repressing ectopic MYHM86-2 expression in the fast muscle fibers. The transcriptional mechanism that prevents MYHM86-2 expression in the fast muscle fibers is mediated through Sox6 binding elements. We also demonstrated that Sox6 may function as a transcriptional repressor of MYHM86-2 expression. We further discovered that nuclear factor of activated T cells (NFAT) binding elements plays a key role and myocyte enhancer factor-2 (MEF2) binding elements participate in the transcriptional regulation of MYHM86-2 expression.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
7
|
Asaduzzaman M, Akolkar DB, Kinoshita S, Watabe S. The expression of multiple myosin heavy chain genes during skeletal muscle development of torafugu Takifugu rubripes embryos and larvae. Gene 2012. [PMID: 23201422 DOI: 10.1016/j.gene.2012.10.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In vertebrates, the development-dependent and tissue-specific expression of myosin heavy chain (MYH) genes (MYHs) contributes to the formation of diverged muscle fiber types. The expression patterns of developmentally regulated MYHs have been investigated in certain species of fish. However, the expression profiles of MYHs during torafugu Takifugu rubripes development, although extensively studied in adult tissues, have not been sufficiently studied, and also the expression orders of MYHs during development have remained unclear. In the present study, we comprehensively cloned four MYHs (MYH(M743-2), MYH(M86-2), MYH(M5) and MYH(M2126-1)) from embryos, and two MYHs (MYH(M2528-1) and MYH(M1034)) from larvae, and characterized their expression pattern in relation to developmental stages of torafugu by reverse transcription (RT)-PCR and in situ hybridization. The expression of MYHs from torafugu embryos and larvae appeared sequentially and varied largely in relation to the developmental stage-dependent and fibers-type-specific manners. The transcripts of MYH(M743-2) appeared first in embryos at 3 days post fertilization (dpf) and were localized in the epaxial and hypaxial domains of fast muscle fibers of larval myotome, whereas those of MYH(M5) and MYH(M86-2) in 3 dpf and 4 dpf, respectively, and both were localized in superficial slow and horizontal myoseptum regions. The expression of MYH(M1034) and MYH(M2126-1) was quite low and mostly undetectable. Different MYHs from torafugu embryos and larvae have also been found to be expressed differentially in pectoral fin and craniofacial muscles. Interestingly, the transcripts of MYH(M2528-1) first appeared at 6 dpf and were distinctly expressed at the dorsal and ventral extremes of larval myotome, suggesting its involvement in stratified hyperplasia. The novel involvement of MYH(M2528-1) in mosaic hyperplasia was further confirmed in juvenile torafugu, where the transcripts were expressed in fast fibers with small diameters as well as the inner part of superficial slow fibers.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
8
|
Asaduzzaman M, Kinoshita S, Siddique BS, Asakawa S, Watabe S. Multiple cis-elements in the 5'-flanking region of embryonic/larval fast-type of the myosin heavy chain gene of torafugu, MYH(M743-2), function in the transcriptional regulation of its expression. Gene 2011; 489:41-54. [PMID: 21893174 DOI: 10.1016/j.gene.2011.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 01/10/2023]
Abstract
The myosin heavy chain gene, MYH(M743-2), is highly expressed in fast muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional regulatory mechanism involved in its expression remained unknown. Here, we analyzed the 2075bp 5'-flanking region of torafugu MYH(M743-2) to examine the spatial and temporal regulation by using transgenic and transient expression techniques in zebrafish embryos. Combining both transient and transgenic analyses, we demonstrated that the 2075bp 5'-flanking sequences was sufficient for its expression in skeletal, craniofacial and pectoral fin muscles. The immunohistochemical observation revealed that the zebrafish larvae from the stable transgenic line consistently expressed enhanced green fluorescent protein (EGFP) in fast muscle fibers. Promoter deletion analyses demonstrated that the minimum 468bp promoter region could direct MYH(M743-2) expression in zebrafish larvae. We discovered that the serum response factor (SRF)-like binding sites are required for promoting MYH(M743-2) expression and myoblast determining factor (MyoD) and myocyte enhancer factor-2 (MEF2) binding sites participate in the transcriptional control of MYH(M743-2) expression in fast skeletal muscles. We further discovered that MyoD binding sites, but not MEF2, participate in the transcriptional regulation of MYH(M743-2) expression in pectoral fin and craniofacial muscles. These results clearly demonstrated that multiple cis-elements in the 5'-flanking region of MYH(M743-2) function in the transcriptional control of its expression.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
9
|
Ono Y, Kinoshita S, Ikeda D, Watabe S. Early development of medaka Oryzias latipes muscles as revealed by transgenic approaches using embryonic and larval types of myosin heavy chain genes. Dev Dyn 2010; 239:1807-17. [PMID: 20503376 DOI: 10.1002/dvdy.22298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We cloned three full-length cDNAs encoding myosin heavy chains (MYHs) previously found to be expressed in embryos or larvae of medaka Oryzias latipes. Based on cDNA sequence information, the three medaka MYH genes, mMYH(emb1), mMYH(L1) and mMYH(L2), were localized on the chromosomes. In vivo promoter assay using the gene encoding green or red fluorescent protein and linked to the 5'-flanking region of mMYH demonstrated that the transcripts of fast-type mMYH(emb1), first expressed in embryos but belonging to the adult type in phylogenetic analysis, were located in the horizontal myoseptum. On the other hand, embryonic fast-type mMYH(L1) and mMYH(L2) were expressed in the whole myotomes. Interestingly, cells expressing mMYH(emb1) were localized together with engrailed, and cyclopamine, which blocks hedgehog signaling, inhibited mMYH(emb1) expression as well as the formation of the horizontal myoseptum, suggesting that muscle pioneer cells express mMYH(emb1) as a key protein in the formation of the horizontal myoseptum.
Collapse
Affiliation(s)
- Yosuke Ono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | |
Collapse
|
10
|
Yasmin L, Kinoshita S, Asaduzzaman M, Akolkar DB, Ikeda D, Ono Y, Watabe S. A 5'-flanking region of embryonic-type myosin heavy chain gene, MYH(M)₇₄₃₋₂, from torafugu Takifugu rubripes regulates developmental muscle-specific expression. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:76-81. [PMID: 20605755 DOI: 10.1016/j.cbd.2010.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/25/2022]
Abstract
The myosin heavy chain gene, MYH(M)₇₄₃₋₂, is highly expressed in fast muscle fibers of torafugu embryos. However, the regulatory mechanisms involved in its expression have been unclear. In this study, we examined spatio-temporal expression patterns of this gene during development by injecting expression vectors containing the GFP reporter gene fused to the 5'-flanking region of MYH(M)₇₄₃₋₂ into fertilized eggs of zebrafish and medaka. Although the -2.1kb 5'-flanking region of torafugu MYH(M)₇₄₃₋₂ showed no homology with the corresponding regions of zebrafish and medaka orthologous genes on the rVISTA analysis, the torafugu 5'-flanking region activated the GFP expression which was detected in the myotomal compartment for both zebrafish and medaka embryos. The GFP expression was localized to fast and slow muscle fibers in larvae as revealed by immunohistochemical analysis. In addition to the above tissues, GFP was also expressed in jaw, eye and pectoral fin muscles in embryos and larvae. These results clearly demonstrated that the 2.1 kb 5'-flanking region of MYH(M)₇₄₃₋₂ contains essential cis-regulatory sequences for myogenesis that are conserved among torafugu, zebrafish and medaka.
Collapse
Affiliation(s)
- Lubna Yasmin
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Japan
| | | | | | | | | | | | | |
Collapse
|