1
|
B Chromosomes and Cytogenetic Characteristics of the Common Nase Chondrostoma nasus (Linnaeus, 1758). Genes (Basel) 2020; 11:genes11111317. [PMID: 33172121 PMCID: PMC7694786 DOI: 10.3390/genes11111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are very promising structures, among others, in that they are an additional genomic compartment for evolution. In this study, we tested the presence and frequency of B chromosomes and performed the first cytogenetic examination of the common nase (Chondrostoma nasus). We investigated the individuals from two populations in the Vistula River basin, in Poland, according to the chromosomal distribution of the C-bands and silver nucleolar organizer regions (Ag-NORs), using sequential staining with AgNO3 and chromomycin A3 (CMA3). Furthermore, we analyzed the chromosomal localization of two rDNA families (45S and 5S rDNA) using fluorescence in situ hybridization (FISH) with rDNA probes. Chondrostoma nasus individuals showed a standard (A) chromosome set consisting of 2n = 50: 12 metacentric, 32 submetacentric, and 6 acrocentric chromosomes (NF = 94). Fourteen out of the 20 analyzed individuals showed 1–2 mitotically unstable submetacentric B chromosomes of different sizes. Six of them, in 14.1% of the analyzed metaphase plates, had a single, medium-sized submetacentric B (Bsm) chromosome (2n = 51) with a heterochromatic block located in its pericentromeric region. The other seven individuals possessed a Bsm (2n = 51) in 19.4% of the analyzed metaphase plates, and a second Bsm chromosome (2n = 52), the smallest in the set, in 15.5% of metaphase plates, whereas one female was characterized by both Bsm chromosomes (2n = 52) in 14.3% of the analyzed metaphase plates. AgNORs, GC-rich DNA sites, and 28S rDNA hybridization sites were observed in the short arms of two submetacentric chromosome pairs of A set. The constitutive heterochromatin was visible as C bands in the centromeric regions of almost all Chondrostoma nasus chromosomes and in the pericentromeric region of several chromosome pairs. Two 5S rDNA hybridization sites in the pericentromeric position of the largest acrocentric chromosome pair were observed, whereas two other such sites in co-localization on a smaller pair of NOR chromosomes indicate a species-specific character. The results herein broaden our knowledge in the field of B chromosome distribution and molecular cytogenetics of Chondrostoma nasus: a freshwater species from the Leuciscidae family.
Collapse
|
2
|
Amorim KDJ, Cioffi MDB, Bertollo LAC, Soares RX, de Souza AS, da Costa GWWF, Molina WF. Co-located 18S/5S rDNA arrays: an ancient and unusual chromosomal trait in Julidini species (Labridae, Perciformes). COMPARATIVE CYTOGENETICS 2016; 10:555-570. [PMID: 28123678 PMCID: PMC5240509 DOI: 10.3897/compcytogen.v10i4.10227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Wrasses (Labridae) are extremely diversified marine fishes, whose species exhibit complex interactions with the reef environment. They are widely distributed in the Indian, Pacific and Atlantic oceans. Their species have displayed a number of karyotypic divergent processes, including chromosomal regions with complex structural organization. Current cytogenetic information for this family is phylogenetically and geographically limited and mainly based on conventional cytogenetic techniques. Here, the distribution patterns of heterochromatin, GC-specific chromosome regions and Ag-NORs, and the organization of 18S and 5S rDNA sites of the Atlantic species Thalassoma noronhanum (Boulenger, 1890), Halichoeres poeyi (Steindachner, 1867), Halichoeres radiatus (Linnaeus, 1758), Halichoeres brasiliensis (Bloch, 1791) and Halichoeres penrosei Starks, 1913, belonging to the tribe Julidini were analyzed. All the species exhibited 2n=48 chromosomes with variation in the number of chromosome arms among genera. Thalassoma noronhanum has 2m+46a, while species of the genus Halichoeres Rüppell, 1835 share karyotypes with 48 acrocentric chromosomes. The Halichoeres species exhibit differences in the heterochromatin distribution patterns and in the number and distribution of 18S and 5S rDNA sites. The occurrence of 18S/5S rDNA syntenic arrangements in all the species indicates a functionally stable and adaptive genomic organization. The phylogenetic sharing of this rDNA organization highlights a marked and unusual chromosomal singularity inside the family Labridae.
Collapse
Affiliation(s)
- Karlla Danielle Jorge Amorim
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235,13565-905, São Carlos, SP, Brasil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235,13565-905, São Carlos, SP, Brasil
| | - Rodrigo Xavier Soares
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Allyson Santos de Souza
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Gideão Wagner Werneck Felix da Costa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, 59078-970, Natal, RN, Brasil
| |
Collapse
|
3
|
Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar Genomics 2014; 15:29-34. [PMID: 24844732 DOI: 10.1016/j.margen.2014.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022]
Abstract
The process of preferential chromosome segregation during meiosis has been suggested to be responsible for the predominance of certain chromosome types in the karyotypes of mammals, birds and insects. We developed an extensive analysis of the fixation of mono- or bibrachial chromosomes in the karyotypes of the large Actinopterygii fish group, a key link in the evolution of terrestrial vertebrates, in order to investigate the generality of meiotic drive in determining karyotypic macrotrends. Unlike mammals, fishes have markedly undergone several types of preferential chromosomal rearrangements throughout evolution. Data from the analyzed orders indicate a prevalence of karyotypes with few (<33%) or many (>66%) acrocentric chromosomes and a low number of karyotypes with balanced numbers of mono- and bi-brachial elements. Parallel trends towards a higher number of karyotypes with prevalence of monobrachial chromosomes occurred in phylogenetically close orders (e.g. Perciformes and Tetraodontiformes, and in the order Mugiliformes) and in clades with prevalence of bibrachial elements (e.g. Characiformes, Gymnotiformes, Siluriformes, and Cypriniformes). Some orders where fewer species were available for study, such as Atheriniformes and Anguilliformes, showed karyotype assemblages where both trends were present. Our results strongly suggest a primary role of meiotic drive in karyotypic evolution as indicated by the accumulation of monobrachial chromosomes in Perciformes and Cypriniformes, or bibrachial chromosomes in Siluriformes and Characiformes. Further examinations of the interaction between life history traits, environmental characteristics, and the fixation of chromosomal rearrangements would be exceedingly valuable.
Collapse
|
4
|
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet Genome Res 2013; 141:90-102. [PMID: 24080951 DOI: 10.1159/000354832] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular cytogenetic data on the number and position of 45S ribosomal RNA genes (rDNA; located in nucleolus organizing regions, NORs) detected by FISH in 330 species of 77 families and 22 orders of bony fishes (Teleostei) and, additionally, 11 species of basal ray-finned fishes are compiled and analyzed. The portion of species with single rDNA sites in the sample amounts to 72%. The percentage of species with multiple NORs decreases with increasing numbers of rDNA loci per genome, i.e. scarcely 3% of species carry 4 or more rDNA-bearing chromosome pairs. 43% of all rDNA sites analyzed occur terminally on the short arms of chromosomes or constitute them. In general, terminal rDNA sites account for 87% of all examined cases. Interspecific variation in the location of single rDNA sites among related taxa, polymorphisms of multiple NORs in some groups of teleosts and analytical outcomes on the subject are reviewed.
Collapse
Affiliation(s)
- E Gornung
- 'Charles Darwin' Department of Biology and Biotechnologies, University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
5
|
Martinez PA, Jacobina UP, Molina WF. Comparative cytogenetics and heterochromatic patterns in two species of the genus Acanthostracion (Ostraciidae: Tetraodontiformes). Mar Genomics 2011; 4:215-20. [PMID: 21867974 DOI: 10.1016/j.margen.2011.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
Abstract
Some groups of fish, such as those belonging to the Order Tetraodontiformes, may differ significantly in the amount and location of heterochromatin in the chromosomes. There is a marked variation in DNA content of more than seven-fold among the families of this Order. However, the karyoevolutionary mechanisms responsible for this variation are essentially unknown. The largest genomic contents are present in species of the family Ostraciidae (2.20-2.60pg). The present study cytogenetically characterized two species of the family Ostraciidae, Acanthostracion polygonius and A. quadricornis, using conventional staining, C-bandings, Ag-NOR, CMA(3)/DAPI, AluI, PstI, EcoRI, TaqI and HinfI restriction enzymes (REs) and double FISH with 18S and 5S rDNA probes. The karyotypes of both species showed 2n=52 acrocentric chromosomes (FN=52; chromosome arms) and pronounced conserved structural characteristics. A significant heterochromatic content was observed equilocally distributed in pericentromeric position in all the chromosome pairs. This condition is unusual in relation to the karyotypes of other families of Tetraodontiformes and probability is the cause of the higher DNA content in Ostraciidae. Given the role played by repetitive sequences in the genomic reorganization of this Order, it is suggested that the conspicuous heterochromatic blocks, present in the same chromosomal position and with apparently similar composition, may have arisen or undergo evolutionary changes in concert providing clues about the chromosomal mechanisms which led to extensive variation in genomic content of different Tetraodontiformes families.
Collapse
Affiliation(s)
- Pablo Ariel Martinez
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Biologia Celular e Genética, Centro de Biociências, Lagoa Nova s/n, CEP 59078-970, Natal, Rio Grande do Norte, Brazil.
| | | | | |
Collapse
|