1
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
2
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
3
|
Tucker RP, Adams JC. Molecular evolution of the Thrombospondin superfamily. Semin Cell Dev Biol 2024; 155:12-21. [PMID: 37202276 DOI: 10.1016/j.semcdb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Thrombospondins (TSPs) are multidomain, calcium-binding glycoproteins that have wide-ranging roles in vertebrates in cell interactions, extracellular matrix (ECM) organisation, angiogenesis, tissue remodelling, synaptogenesis, and also in musculoskeletal and cardiovascular functions. Land animals encode five TSPs, which assembly co-translationally either as trimers (subgroup A) or pentamers (subgroup B). The vast majority of research has focused on this canonical TSP family, which evolved through the whole-genome duplications that took place early in the vertebrate lineage. With benefit of the growth in genome- and transcriptome-predicted proteomes of a much wider range of animal species, examination of TSPs throughout metazoan phyla has revealed extensive conservation of subgroup B-type TSPs in invertebrates. In addition, these searches established that canonical TSPs are, in fact, one branch within a TSP superfamily that includes other clades designated mega-TSPs, sushi-TSPs and poriferan-TSPs. Despite the apparent simplicity of poriferans and cnidarians as organisms, these phyla encode a greater diversity of TSP superfamily members than vertebrates. We discuss here the molecular characteristics of the TSP superfamily members, current knowledge of their expression profiles and functions in invertebrates, and models for the evolution of this complex ECM superfamily.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, 95616 USA
| | | |
Collapse
|
4
|
Magerd S, Senarai T, Thongsum O, Chawiwithaya C, Sato C, Kitajima K, Weerachatyanukul W, Asuvapongpatana S, Surinlert P. Shrimp thrombospondin (TSP): presence of O-β1,4 N-acetylglucosamine polymers and its function in TSP chain association in egg extracellular matrix. Sci Rep 2022; 12:7925. [PMID: 35562392 PMCID: PMC9106747 DOI: 10.1038/s41598-022-11873-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
Abstract
We characterized the existence of O-β(1,4)-GlcNAc polymers (β1,4GNP) that were anchored on the O-linked glycosylation sites of shrimp thrombospondin (pmTSP-II). There were five putative β1,4GNP linkages on the epithelial growth factor-like domain of pmTSP-II. Antibody against O-β-GlcNAc (CTD110.6) was used to prove the existence of linear and complex β1,4GNP. The antibody well reacted with linear chito-triose, -tetraose and -pentaose conjugated with phosphatidylethanolamine lipid. The immunoreactivity could also be detected with a complex β1,4GNP within pmTSP-II (at MW > 250 kDa). Upon denaturing the protein with SDS-PAGE buffer, the size of pmTSP-II was shifted to be 250 kDa, approximately 2.5 folds larger than the deduced molecular mass of pmTSP-II (110 kDa), suggesting additional association of pmTSP-II apart from its known disulfide bridging. This was confirmed by chitinase digestion on pmTSP-II protein leading to the subsequent smaller protein bands at 110–170 kDa in time- and concentration-dependent manners. These bands well reacted with CTD110.6 antibody and disappeared after extensive chitinase hydrolysis. Together, we believe that β1,4GNP on pmTSP-II serve the function in an inter-chain association to provide structural architecture of egg extracellular matrix, a novel function of pmTSP-II in reproductive biology.
Collapse
Affiliation(s)
- Sirilug Magerd
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Thanyaporn Senarai
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Chihiro Sato
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathum-Thani, Thailand. .,Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum-Thani, Thailand.
| |
Collapse
|
5
|
Rajeish M, Dechamma MM, Mani MK, Rai P, Karunasagar I, Bossier P, Karunasagar I, Maiti B. Different expression pattern of thrombospondin gene in the presence and absence of β-glucan fed Penaeus monodon challenged with white spot syndrome virus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100020. [PMID: 36420513 PMCID: PMC9680046 DOI: 10.1016/j.fsirep.2021.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Thrombospondin (TSP) gene expression in response to WSSV infection in shrimp, Penaeus monodon. Expression pattern of TSP gene in the presence and absence of β-glucan fed shrimp. High-level expression of TSP gene in various tissues of WSSV-challenged shrimp at 2 h. Altered gene expression pattern in WSSV-challenged shrimp, fed with and without β-glucan. TSP could play a role as an acute inducible phase response protein to WSSV infection.
Thrombospondins (TSPs) are extracellular, calcium-binding glycoproteins that play an essential role in cell homeostasis and development, wound-healing, angiogenesis, connective tissue organization, immune response etc. and it conserves from sea sponges to mammals. However, their role in shrimp immunity is poorly understood. In the present study, the differential expression profiling of TSP transcripts in Penaeus monodon tissues such as gills, lymphoid organs, hepatopancreas, and hemolymph challenged with white spot syndrome virus (WSSV), were studied by quantitative real-time PCR. Further, shrimps fed with the immunostimulant (β-glucan) when challenged with WSSV showed significant upregulation of TSP expression in gills, hepatopancreas, and lymphoid organ at the early phase of WSSV infection. The results suggest that TSP may be an inducible acute phase response protein to WSSV infection. The possibility of differences in mRNA expression pattern seen in immunostimmulated shrimp after the viral challenge, possibility due to altered immune mechanisms getting triggered during immunostimulant administration and virus infections in the host.
Collapse
|
6
|
Yang F, Li S, Xiang J, Zhao X, Li F. Transcriptome analysis reveals the regulation of the shrimp STAT on host chitin-binding domain containing proteins and energy metabolism process during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2020; 100:345-357. [PMID: 32184190 DOI: 10.1016/j.fsi.2020.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
JAK/STAT signaling pathway is suggested to enhance the infection of WSSV in crustaceans. However, the regulation mechanism of this process is not quite clear. Here, comparative transcriptomic analysis was performed among shrimps before and after Litopenaeus vannamei STAT (LvSTAT) was silenced by dsRNA approach during WSSV infection. Differentially expressed genes (DEGs) common in the STAT-interfered groups and control groups at different times after WSSV infection were analyzed to acquire the genes probably regulated by LvSTAT. DEGs annotation and further GO terms enrichment analyses revealed that the identified DEGs mainly contained two categories, chitin-binding domain containing proteins and energy metabolism related genes. The former mainly included cuticle proteins, thrombospondins (TSPs) and peritrophin, while the later mainly included hexose catabolic process and glycolysis related genes. Two cuticle proteins and two TSPs were further studied to learn their expression changes during WSSV infection. They were significantly regulated during WSSV infection, implying the involvement of chitin-binding domain containing protein in the invasion process of WSSV. Systematic analysis on the glycolysis and lipid synthesis pathway demonstrated that silencing of LvSTAT could reduce the glycolysis efficiency and the production of lipids. It could be speculated that a favorable function of LvSTAT for WSSV replication existed by regulating the energy metabolism of the host. Through revealing the main category of genes and biological processes regulated by STAT, our study could shed new light on the roles of JAK/STAT signaling pathway in shrimp during virus infection.
Collapse
Affiliation(s)
- Feifei Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xingming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Timklay W, Magerd S, Sato C, Somrit M, Watthammawut A, Senarai T, Weerachatyanukul W, Kitajima K, Asuvapongpatana S. N-linked mannose glycoconjugates on shrimp thrombospondin, pmTSP-II, and their involvement in the sperm acrosome reaction. Mol Reprod Dev 2019; 86:440-449. [PMID: 30740837 DOI: 10.1002/mrd.23122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Glycoconjugates in egg extracellular matrices are known to serve several functions in reproductive processes. Here, the presence of N-linked mannose (Man) glycoconjugates on shrimp thrombospondin ( pmTSP-II) and their physiological functions were investigated in the black tiger shrimp Penaeus monodon. A molecular analysis of pmTSP-II demonstrated anchorage sites for N-linked glycans in both the chitin-binding and TSP3 domains. The presence of Man residues was verified by concanavalin A lectin histochemistry on the purified fraction of pmTSP-II (250 kDa with protease inhibitor). The function of the Man glycoconjugates was evident by the Con A interference with the pmTSP-II-induced acrosome reaction (AR) as well as by the ability to recover the induction of the AR by the inclusion of Mans in the treatment mixture. In addition, the recombinant proteins of the three signature pmTSP-II domains expressed in E. coli (lacking glycosylation) and mannosidase-treated pmTSP-II showed a minimal ability to initiate the AR response. Together, these results provide evidence of the pivotal role that Man-linked pmTSP-II plays in modulating the shrimp sperm AR, a novel role for a TSP family protein in shrimp reproductive biology.
Collapse
Affiliation(s)
- Wauranittha Timklay
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirilug Magerd
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindratiraj University, Bangkok, Thailand
| | - Chihiro Sato
- Bioscience and Biotechnology Center & Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Atthaboon Watthammawut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Thanyaporn Senarai
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Ken Kitajima
- Bioscience and Biotechnology Center & Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | |
Collapse
|
8
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
9
|
Magerd S, Asuvapongpatana S, Vanichviriyakit R, Chotwiwatthanakun C, Weerachatyanukul W. Characterization of the thrombospondin (TSP)-II gene in Penaeus monodon and a novel role of TSP-like proteins in an induction of shrimp sperm acrosome reaction. Mol Reprod Dev 2013; 80:393-402. [PMID: 23559158 DOI: 10.1002/mrd.22173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/17/2013] [Indexed: 11/12/2022]
Abstract
We have recently shown that water-soluble materials from the egg extracellular cortical rods (wsCRs) exert the ability to induce the sperm acrosome reaction in Penaeus monodon. In this study, we further demonstrated that the thrombospondin protein family (TSP) existed in wsCRs, and that their mRNA transcripts were detected in developing oocytes as early as stage I. Full sequence analysis revealed that our pmTSP sequence was considerably different from the recently reported pmTSP in the 5' nonconserved region and in many TSP signature domains, hence, the name pmTSP-II was given to our variant. The transcripts of pmTSP-II were detected only in early developing oocytes (stage-I and -II) while TSP-like proteins were detected in all developing oocytes, particularly at the outer rim of cortical rods situated in the extracellular crypts of the mature, stage-IV oocytes. In addition, wsCRs contained anti-TSP-reactive proteins, suggesting that TSP-like proteins are dissolved in and are part of the egg water during spawning. The functional importance of TSP-like proteins was evident by the interference of a wsCR-induced acrosome reaction response with anti-TSP in a concentration-dependent manner. In summary, we found that pmTSP-II transcripts were present in the developing oocytes and pmTSP-II protein accumulated in cortical rods, which are partly secreted and thus solubilized to produce dissolved TSP-like proteins that participate in induction of the sperm acrosome reaction-a novel reproductive role for TSP protein family.
Collapse
Affiliation(s)
- Sirilug Magerd
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|