1
|
Transcriptome Profiling Reveals a Divergent Adaptive Response to Hyper- and Hypo-Salinity in the Yellow Drum, Nibea albiflora. Animals (Basel) 2021; 11:ani11082201. [PMID: 34438658 PMCID: PMC8388402 DOI: 10.3390/ani11082201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Global warming and certain climate disasters (typhoon, tsunami, etc.) can lead to fluctuation in seawater salinity that causes salinity stress in fish. The aim of this study was to investigate the functional genes and relevant pathways in response to salinity stress in the yellow drum. Genes and pathways related to signal transduction, osmoregulation, and metabolism may be involved in the adaptive regulation to salinity in the yellow drum. Additionally, the genes under salinity stress were mainly divided into three expression trends. Our results provided novel insights into further study of the salinity adaptability of euryhaline fishes. Abstract The yellow drum (Nibea albiflora) is an important marine economic fish that is widely distributed in the coastal waters of the Northwest Pacific. In order to understand the molecular regulatory mechanism of the yellow drum under salinity stress, in the present study, transcriptome analysis was performed under gradients with six salinities (10, 15, 20, 25, 30, and 35 psu). Compared to 25 psu, 907, 1109, 1309, 18, and 243 differentially expressed genes (DEGs) were obtained under 10, 15, 20, 30, and 35 psu salinities, respectively. The differential gene expression was further validated by quantitative real-time PCR (qPCR). The results of the tendency analysis showed that all DEGs of the yellow drum under salinity fluctuation were mainly divided into three expression trends. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the PI3K-Akt signaling pathway, Jak-STAT signaling pathway as well as the glutathione metabolism and steroid biosynthesis pathways may be the key pathways for the salinity adaptive regulation mechanism of the yellow drum. G protein-coupled receptors (GPCRs), the solute carrier family (SLC), the transient receptor potential cation channel subfamily V member 6 (TRPV6), isocitrate dehydrogenase (IDH1), and fructose-bisphosphate aldolase C-B (ALDOCB) may be the key genes in the response of the yellow drum to salinity stress. This study explored the transcriptional patterns of the yellow drum under salinity stress and provided fundamental information for the study of salinity adaptability in this species.
Collapse
|
2
|
Zhou K, Huang Y, Chen Z, Du X, Qin J, Wen L, Ma H, Pan X, Lin Y. Liver and spleen transcriptome reveals that Oreochromis aureus under long-term salinity stress may cause excessive energy consumption and immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 107:469-479. [PMID: 33181338 DOI: 10.1016/j.fsi.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
To investigate the physiological responses of Oreochromis aureus to salinity fluctuations at the molecular level. We used RNA-seq to explore the differentially expressed genes (DEGs) in the liver and spleen of O. aureus at 0, 3, 7 and 11 ppt (parts per thousand) salinity levels. Herein, De novo assembly generated 71,009 O. aureus unigenes, of which 34,607 were successfully mapped to the four major databases. A total of 120 shared DEGs were identified in liver and spleen transcripts, of which 83 were up-regulated and 37 were down-regulated. GO and KEGG analysis found a total of 26 significant pathways, mainly including energy metabolism, immune response, ion transporters and signal transduction. The trend module category of DEGs showed that the genes (e.g., FASN, ODC1, CD22, MRC, TRAV and SLC7 family) involved in the change-stable-change (1) and the constant-change categories (2) were highly sensitive to salinity fluctuations, which were of great value for further study. Based on these results, it would help provide basic data for fish salinity acclimation, and provide new insights into evolutionary response of fish to various aquatic environments in the long-term stress adaptation mechanism.
Collapse
Affiliation(s)
- Kangqi Zhou
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Zhong Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xuesong Du
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Junqi Qin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Luting Wen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huawei Ma
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xianhui Pan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
3
|
Cao D, Li J, Huang B, Zhang J, Pan C, Huang J, Zhou H, Ma Q, Chen G, Wang Z. RNA-seq analysis reveals divergent adaptive response to hyper- and hypo-salinity in cobia, Rachycentron canadum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1713-1727. [PMID: 32514851 DOI: 10.1007/s10695-020-00823-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Salinity is an important abiotic stress that affects metabolic and physiological activities, breed, development, and growth of marine fish. Studies have shown that cobia (Rachycentron canadum), a euryhaline marine teleost fish, possesses the ability of rapid and effective hyper/hypo iono- and osmoregulation. However, genomic studies on this species are lacking and it has not been studied at the transcriptome level to identify the genes responsible for salinity regulation, which affects the understanding of the fundamental mechanism underlying adaptation to fluctuations in salinity. To describe the molecular response of cobia to different salinity levels, we used RNA-seq analysis to identify genes and biological processes involved in response to salinity changes. In the present study, 395,080,114 clean reads were generated and then assembled into 65,318 unigenes with an N50 size of 2758 bp. There were 20,671 significantly differentially expressed genes (DEGs) including 8805 genes adapted to hypo-salinity and 11,866 genes adapted to hyper-salinity. These DEGs were highly represented in steroid biosynthesis, unsaturated fatty acid metabolism, glutathione metabolism, energy metabolism, osmoregulation, and immune response. The candidate genes identified in cobia provide valuable information for studying the molecular mechanism of salinity adaptation in marine fish. Furthermore, the transcriptomic sequencing data acts not only as an important resource for the identification of novel genes but also for further investigations regarding cobia biology.
Collapse
Affiliation(s)
- Danyu Cao
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jinfeng Li
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Baosong Huang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jiandong Zhang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Chuanhao Pan
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jiansheng Huang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Hui Zhou
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Qian Ma
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Gang Chen
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Zhongliang Wang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Li J, Xue L, Cao M, Zhang Y, Wang Y, Xu S, Zheng B, Lou Z. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1255-1277. [PMID: 32162151 DOI: 10.1007/s10695-020-00786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major ecological factor in the marine environment, and extremely important for the survival, development, and growth of fish. In this study, gill transcriptomes were examined by high-throughput sequencing at three different salinities (12 ppt as low salinity, 22 ppt as control salinity, and 32 ppt as high salinity) in an importantly economical fish silvery pomfret. A total of 187 genes were differentially expressed, including 111 up-regulated and 76 down-regulated transcripts in low-salinity treatment group and 107 genes differentially expressed, including 74 up-regulated and 33 down-regulated transcripts in high-salinity treatment group compared with the control group, respectively. Some pathways including NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor pathway, cardiac muscle contraction, and vascular smooth muscle contraction were significantly enriched. qPCR analysis further confirmed that mRNA expression levels of immune (HSP90A, IL-1β, TNFα, TLR2, IP-10, MIG, CCL19, and IL-11) and ion transport-related genes (WNK2, NPY2R, CFTR, and SLC4A2) significantly changed under salinity stress. Low salinity stress caused more intensive expression changes of immune-related genes than high salinity. These results imply that salinity stress may affect immune function in addition to regulating osmotic pressure in silvery pomfret.
Collapse
Affiliation(s)
- Juan Li
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yu Zhang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Baoxiao Zheng
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Zhengjia Lou
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Meng A, Marchet C, Corre E, Peterlongo P, Alberti A, Da Silva C, Wincker P, Pelletier E, Probert I, Decelle J, Le Crom S, Not F, Bittner L. A de novo approach to disentangle partner identity and function in holobiont systems. MICROBIOME 2018; 6:105. [PMID: 29885666 PMCID: PMC5994019 DOI: 10.1186/s40168-018-0481-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/13/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Study of meta-transcriptomic datasets involving non-model organisms represents bioinformatic challenges. The production of chimeric sequences and our inability to distinguish the taxonomic origins of the sequences produced are inherent and recurrent difficulties in de novo assembly analyses. As the study of holobiont meta-transcriptomes is affected by challenges invoked above, we propose an innovative bioinformatic approach to tackle such difficulties and tested it on marine models as a proof of concept. RESULTS We considered three holobiont models, of which two transcriptomes were previously published and a yet unpublished transcriptome, to analyze and sort their raw reads using Short Read Connector, a k-mer based similarity method. Before assembly, we thus defined four distinct categories for each holobiont meta-transcriptome: host reads, symbiont reads, shared reads, and unassigned reads. Afterwards, we observed that independent de novo assemblies for each category led to a diminution of the number of chimeras compared to classical assembly methods. Moreover, the separation of each partner's transcriptome offered the independent and comparative exploration of their functional diversity in the holobiont. Finally, our strategy allowed to propose new functional annotations for two well-studied holobionts (a Cnidaria-Dinophyta, a Porifera-Bacteria) and a first meta-transcriptome from a planktonic Radiolaria-Dinophyta system forming widespread symbiotic association for which our knowledge is considerably limited. CONCLUSIONS In contrast to classical assembly approaches, our bioinformatic strategy generates less de novo assembled chimera and allows biologists to study separately host and symbiont data from a holobiont mixture. The pre-assembly separation of reads using an efficient tool as Short Read Connector is an effective way to tackle meta-transcriptomic challenges and offers bright perpectives to study holobiont systems composed of either well-studied or poorly characterized symbiotic lineages and ultimately expand our knowledge about these associations.
Collapse
Affiliation(s)
- Arnaud Meng
- Sorbonne Université, Univ Antilles, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), F-75005 Paris, France
| | - Camille Marchet
- Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France
| | - Erwan Corre
- Sorbonne Universités, CNRS - FR2424, ABiMS, Station biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | | | - Adriana Alberti
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Corinne Da Silva
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Patrick Wincker
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
- UMR8030, CNRS, Evry, France
| | - Eric Pelletier
- Institut de biologie François Jacob, GENOSCOPE, 2 rue Gaston Crémieux, 91057 Evry, France
- UMR8030, CNRS, Evry, France
| | - Ian Probert
- Sorbonne Université, CNRS - FR2424, Roscoff Culture Collection, Station Biologique de Roscoff, Place Georges Teissier, 29682 Roscoff, France
| | - Johan Decelle
- Helmholtz Centre for Environmental Research – UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stéphane Le Crom
- Sorbonne Université, Univ Antilles, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), F-75005 Paris, France
| | - Fabrice Not
- Sorbonne Université, CNRS - UMR7144 - Ecology of Marine Plankton Group, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Lucie Bittner
- Sorbonne Université, Univ Antilles, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), F-75005 Paris, France
| |
Collapse
|
6
|
Rodrigues PA, Ferrari RG, Conte-Junior CA. Application of molecular tools to elucidate the microbiota of seafood. J Appl Microbiol 2018; 124:1347-1365. [PMID: 29345036 DOI: 10.1111/jam.13701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022]
Abstract
The aim of this review is to present the methodologies currently applied to identify microbiota and pathogens transmitted to humans through seafood consumption, focusing on molecular techniques and pointing out their importance, advantages, disadvantages and applicability. Knowledge of available techniques allows researchers to identify which technique best fits their expectations. With such discernment, it will be possible to infer which disadvantages will be present and, therefore, not interfering with the final result. Two methodologies can be employed for this purpose, dependent and independent cultures. However, the dependent culture has certain limitations that can be solved through the independent cultivation techniques, such as PCR, PFGE and NGS, especially through the sequencing of the 16S rRNA region, providing a complete view of microbial diversity. These have revolutionized microbiological knowledge, mainly because they allow for the identification of uncultivable micro-organisms, which represent a substantial portion of total micro-organisms, making it possible to elucidate not yet described taxa which may display pathogenic potential, besides quantifying microbial communities, microbiota genetics, translated proteins and produced metabolites. In addition, transcriptomic and metabolomic techniques also allow for the evaluation of possible impacts that microbial communities may create in their environment, as well as the determination of potential pathogenicity to humans.
Collapse
Affiliation(s)
- P A Rodrigues
- Department of Food Technology, Faculty of Veterinary, Molecular & Analytical Laboratory Center, Universidade Federal Fluminense, Niterói, Brazil
| | - R G Ferrari
- Department of Food Technology, Faculty of Veterinary, Molecular & Analytical Laboratory Center, Universidade Federal Fluminense, Niterói, Brazil.,Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C A Conte-Junior
- Department of Food Technology, Faculty of Veterinary, Molecular & Analytical Laboratory Center, Universidade Federal Fluminense, Niterói, Brazil.,Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Zhang X, Wen H, Wang H, Ren Y, Zhao J, Li Y. RNA-Seq analysis of salinity stress-responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). PLoS One 2017; 12:e0173238. [PMID: 28253338 PMCID: PMC5333887 DOI: 10.1371/journal.pone.0173238] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
Salinity is one of the most prominent abiotic factors, which greatly influence reproduction, development, growth, physiological and metabolic activities of fishes. Spotted sea bass (Lateolabrax maculatus), as a euryhaline marine teleost, has extraordinary ability to deal with a wide range of salinity changes. However, this species is devoid of genomic resources, and no study has been conducted at the transcriptomic level to determine genes responsible for salinity regulation, which impedes the understanding of the fundamental mechanism conferring tolerance to salinity fluctuations. Liver, as the major metabolic organ, is the key source supplying energy for iono- and osmoregulation in fish, however, little attention has been paid to its salinity-related functions but which should not be ignored. In this study, we perform RNA-Seq analysis to identify genes involved in salinity adaptation and osmoregulation in liver of spotted sea bass, generating from the fishes exposed to low and high salinity water (5 vs 30ppt). After de novo assembly, annotation and differential gene expression analysis, a total of 455 genes were differentially expressed, including 184 up-regulated and 271 down-regulated transcripts in low salinity-acclimated fish group compared with that in high salinity-acclimated group. A number of genes with a potential role in salinity adaptation for spotted sea bass were classified into five functional categories based on the gene ontology (GO) and enrichment analysis, which include genes involved in metabolites and ion transporters, energy metabolism, signal transduction, immune response and structure reorganization. The candidate genes identified in L. maculates liver provide valuable information to explore new pathways related to fish salinity and osmotic regulation. Besides, the transcriptomic sequencing data supplies significant resources for identification of novel genes and further studying biological questions in spotted sea bass.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Haishen Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Hailiang Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Yuanyuan Ren
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Ji Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Yun Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
8
|
Chatchaiphan S, Srisapoome P, Kim JH, Devlin RH, Na-Nakorn U. De Novo Transcriptome Characterization and Growth-Related Gene Expression Profiling of Diploid and Triploid Bighead Catfish (Clarias macrocephalus Günther, 1864). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:36-48. [PMID: 28181037 DOI: 10.1007/s10126-017-9730-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
To enhance understanding of triploid gene expression, the transcriptome information from bighead catfish (Clarias macrocephalus Günther, 1864) was studied using the paired-end Illumina HiSeq™ 2000 sequencing platform. In total, 68,227,832 raw reads were generated from liver tissues and 53,149 unigenes were assembled, with an average length of 765 bp and N50 length of 1283 bp. Of these unigenes, 33,428 (62.89%) could be annotated according to their homology with matches in the NCBI non-redundant (Nr), NCBI nucleotide (Nt), Swiss-Prot, Clusters of Orthologous Groups (COG), gene ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Relative expression of liver genes between diploid and triploid bighead catfish revealed more than 90% of the annotated unigenes similarly expressed, regardless of ploidy, whereas 362 upregulated and 83 downregulated with at least a twofold change in triploid relative to diploid. Quantitative real-time PCR of 15 differentially expressed growth-related genes showed consistency between the expression profiles of those genes with the results from RNA-seq analysis. Our results showed that genes in C. macrocephalus liver responded independently to triploidy with the majority showing similar expression levels between diploid and triploid (a dosage compensation phenomenon). The underlying mechanism of the varying gene expression patterns was discussed. Notably, 5 of the top 20 upregulated genes associated with stress response and thus may reflect stress caused by triploidy. The present study adds a substantial contribution to the sequence data available for C. macrocephalus and hence provides valuable resources for further studies. Furthermore, it gives information that may enhance understanding of triploid physiology.
Collapse
Affiliation(s)
- Satid Chatchaiphan
- Graduate Program in Aquaculture, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Jin-Hyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, West Vancouver, BC, V7V1N6, Canada
| | - Uthairat Na-Nakorn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
9
|
Jung H, Yoon BH, Kim WJ, Kim DW, Hurwood DA, Lyons RE, Salin KR, Kim HS, Baek I, Chand V, Mather PB. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction. Int J Mol Sci 2016; 17:ijms17050690. [PMID: 27164098 PMCID: PMC4881516 DOI: 10.3390/ijms17050690] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/29/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.
Collapse
Affiliation(s)
- Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| | - Byung-Ha Yoon
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305806, Korea.
- Department of Bioinformatics, University of Science and Technology, Daejeon 305333, Korea.
| | - Woo-Jin Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Korea.
| | - Dong-Wook Kim
- All Bio Technology Co., LTD, Internet Business Incubation Center, Mokweon University, Daejeon 302729, Korea.
| | - David A Hurwood
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| | - Russell E Lyons
- School of Veterinary Science, University of Queensland, Queensland 4067, Australia.
| | - Krishna R Salin
- School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani 12120, Thailand.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609735, Korea.
| | - Ilseon Baek
- Division of Marine Technology, Chonnam National University, Yeosu 550250, Korea.
| | - Vincent Chand
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| | - Peter B Mather
- Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Queensland 4000, Australia.
| |
Collapse
|
10
|
Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Mar Genomics 2015; 25:75-88. [PMID: 26653845 DOI: 10.1016/j.margen.2015.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.
Collapse
|