1
|
Zhang Y, Yue S, Wang X, Liu M, Xu S, Zhang X, Zhou Y. Global transcriptome dynamics of seagrass flowering and seed development process: insights from the iconic seagrass Zostera marina L. FRONTIERS IN PLANT SCIENCE 2025; 16:1545658. [PMID: 40182556 PMCID: PMC11965923 DOI: 10.3389/fpls.2025.1545658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
Seagrasses are the only group of higher angiosperms capable of fully living in seawater, playing a significant role in plant evolutionary history. However, studies on the molecular regulatory networks underlying sexual reproduction in seagrasses remain limited. This study evaluated the morphological changes of the spathe during eelgrass sexual reproduction and analyzed global transcriptome dynamics across eight sequential stages. The key findings are as follows:(1) Key flowering integrators such as FT, SOC1, AP1, and LFY exhibited high expression levels during the early stages, indicating their involvement in the induction of eelgrass flowering, consistent with terrestrial plants. (2) Based on the classical model of floral organ development in terrestrial plants - the "ABCDE model, genes related to the development of stamens, carpels, and ovules of eelgrass, including B-, C-, D-, and E-class genes, were identified. (3) Photosynthesis was temporarily suppressed after the initiation of sexual reproduction, and gradually resumed during the seed development stage, suggesting that the developed seed may perform photosynthesis. The Fv/Fm value (0.641 ± 0.028) of seeds at the developed seed stage further indicated that these seeds are indeed capable of photosynthesis. These findings provide important insights into the potential mechanisms underlying seagrass sexual reproduction and enrich knowledge of its reproductive genetics.
Collapse
Affiliation(s)
- Yu Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shidong Yue
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjie Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaochun Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Field Scientific Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystems, Ministry of Natural Resources, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Botes J, Ma X, Chang J, Van de Peer Y, Berger DK. Flavonoids and anthocyanins in seagrasses: implications for climate change adaptation and resilience. FRONTIERS IN PLANT SCIENCE 2025; 15:1520474. [PMID: 39935685 PMCID: PMC11810914 DOI: 10.3389/fpls.2024.1520474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Seagrasses are a paraphyletic group of marine angiosperms and retain certain adaptations from the ancestors of all embryophytes in the transition to terrestrial environments. Among these adaptations is the production of flavonoids, versatile phenylpropanoid secondary metabolites that participate in a variety of stress responses. Certain features, such as catalytic promiscuity and metabolon interactions, allow flavonoid metabolism to expand to produce novel compounds and respond to a variety of stimuli. As marine environments expose seagrasses to a unique set of stresses, these plants display interesting flavonoid profiles, the functions of which are often not completely clear. Flavonoids will likely prove to be effective and versatile agents in combating the new host of stress conditions introduced to marine environments by anthropogenic climate change, which affects marine environments differently from terrestrial ones. These new stresses include increased sulfate levels, changes in salt concentration, changes in herbivore distributions, and ocean acidification, which all involve flavonoids as stress response mechanisms, though the role of flavonoids in combatting these climate change stresses is seldom discussed directly in the literature. Flavonoids can also be used to assess the health of seagrass meadows through an interplay between flavonoid and simple phenolic levels, which may prove to be useful in monitoring the response of seagrasses to climate change. Studies focusing on the genetics of flavonoid metabolism are limited for this group, but the large chalcone synthase gene families in some species may provide an interesting topic of research. Anthocyanins are typically studied separately from other flavonoids. The phenomenon of reddening in certain seagrass species typically focuses on the importance of anthocyanins as a UV-screening mechanism, while the role of anthocyanins in cold stress is discussed less often. Both of these stress response functions would be useful for adaptation to climate change-induced deviations in tidal patterns and emersion. However, ocean warming will likely lead to a decrease in anthocyanin content, which may impact the performance of intertidal seagrasses. This review highlights the importance of flavonoids in angiosperm stress response and adaptation, examines research on flavonoids in seagrasses, and hypothesizes on the importance of flavonoids in these organisms under climate change.
Collapse
Affiliation(s)
- Jana Botes
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jiyang Chang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Single-molecule real-time sequencing of the full-length transcriptome of Halophila beccarii. Sci Rep 2022; 12:16444. [PMID: 36180578 PMCID: PMC9525579 DOI: 10.1038/s41598-022-20988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Ecologically, Halophila beccarii Asch. is considered as a colonizing or a pioneer seagrass species and a “tiny but mighty” seagrass species, since it may recover quickly from disturbance generally. The use of transcriptome technology can provide a better understanding of the physiological processes of seagrasses. To date, little is known about the genome and transcriptome information of H. beccarii. In this study, we used single molecule real-time (SMRT) sequencing to obtain full-length transcriptome data and characterize the transcriptome structure. A total of 11,773 of the 15,348 transcripts were successfully annotated in seven databases. In addition, 1573 long non-coding RNAs, 8402 simple sequence repeats and 2567 transcription factors were predicted in all the transcripts. A GO analysis showed that 5843 transcripts were divided into three categories, including biological process (BP), cellular component (CC) and molecular function (MF). In these three categories, metabolic process (1603 transcripts), protein-containing complex (515 transcripts) and binding (3233 transcripts) were the primary terms in BP, CC, and MF, respectively. The major types of transcription factors were involved in MYB-related and NF-YB families. To the best of our knowledge, this is the first report of the transcriptome of H. beccarii using SMRT sequencing technology.
Collapse
|
4
|
Booth MW, Breed MF, Kendrick GA, Bayer PE, Severn-Ellis AA, Sinclair EA. Tissue-specific transcriptome profiles identify functional differences key to understanding whole plant response to life in variable salinity. Biol Open 2022; 11:276025. [PMID: 35876771 PMCID: PMC9428325 DOI: 10.1242/bio.059147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
Plants endure environmental stressors via adaptation and phenotypic plasticity. Studying these mechanisms in seagrasses is extremely relevant as they are important primary producers and functionally significant carbon sinks. These mechanisms are not well understood at the tissue level in seagrasses. Using RNA-seq, we generated transcriptome sequences from tissue of leaf, basal leaf meristem and root organs of Posidonia australis, establishing baseline in situ transcriptomic profiles for tissues across a salinity gradient. Samples were collected from four P. australis meadows growing in Shark Bay, Western Australia. Analysis of gene expression showed significant differences between tissue types, with more variation among leaves than meristem or roots. Gene ontology enrichment analysis showed the differences were largely due to the role of photosynthesis, plant growth and nutrient absorption in leaf, meristem and root organs, respectively. Differential gene expression of leaf and meristem showed upregulation of salinity regulation processes in higher salinity meadows. Our study highlights the importance of considering leaf meristem tissue when evaluating whole-plant responses to environmental change. This article has an associated First Person interview with the first author of the paper. Summary: Differences in seagrass leaf, meristem and root transcriptomes across variable salinities are due to tissue-specific processes. Leaf meristem contained the broadest process range, indicating preferential use for inferring plant-wide activity.
Collapse
Affiliation(s)
- Mitchell W Booth
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Gary A Kendrick
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anita A Severn-Ellis
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,Aquatic Animal Health Research, Indian Ocean Marine Research Centre, Department of Primary Industries and Regional Development, Western Australia, 6020, Australia
| | - Elizabeth A Sinclair
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia.,Kings Park Science, Department of Biodiversity Conservation and Attractions, 1 Kattidj Close, West Perth, Western Australia, 6005, Australia
| |
Collapse
|
5
|
Gu R, Song X, Zhou Y, Xu S, Xu S, Yue S, Zhang Y, Zhang X. Relationships Between Annual and Perennial Seagrass ( Ruppia sinensis) Populations and Their Sediment Geochemical Characteristics in the Yellow River Delta. FRONTIERS IN PLANT SCIENCE 2021; 12:634199. [PMID: 33959136 PMCID: PMC8095395 DOI: 10.3389/fpls.2021.634199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Annual and perennial populations commonly occur for the same submerged aquatic angiosperm species, yet relationships between population types and sediment characteristics are poorly understood. In the current study two Ruppia sinensis habitats with annual and perennial populations were surveyed in the Yellow River Delta (YRD). Biomass and seasonal seed bank size were used to evaluate population status and potential recruitment capacity. Sediment geochemical parameters including moisture, sulfide, Chl a, carbohydrate, OM, TOC, TN, and TP were measured to compare sediment nutrient composition and variability. The results revealed a higher biomass and larger seed bank in the annual R. sinensis population compared with the perennial population. The P levels in sediments between the two R. sinensis populations were similar; while the N level in the sediment of the annual population was significantly higher than the perennial population, which might support the recruitment of vegetative shoots when a large amount of seeds germinated during wet periods. The annual population exhibited greater resilience after habitat desiccation, with the population recovering rapidly once water appeared. The results of this study add to the knowledge of R. sinensis populations and their sediment geochemical characteristics, and can be used as a reference for Ruppia population conservation and management.
Collapse
Affiliation(s)
- Ruiting Gu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoyue Song
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yi Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shaochun Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shidong Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Marín-Guirao L, Entrambasaguas L, Ruiz JM, Procaccini G. Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Mol Ecol 2019; 28:2486-2501. [PMID: 30938465 DOI: 10.1111/mec.15089] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
Abstract
The Mediterranean Sea is particularly vulnerable to warming and the abrupt declines experienced by the endemic Posidonia oceanica populations after recent heatwaves have forecasted severe consequences for the ecological functions and socio-economical services this habitat forming species provides. Nevertheless, this highly clonal and long-lived species could be more resilient to warming than commonly thought since heat-sensitive plants massively bloomed after a simulated heatwave, which provides the species with an opportunity to adapt to climate change. Taking advantage of this unexpected plant response, we investigated for the first time the molecular and physiological mechanisms involved in seagrass flowering through the transcriptomic analysis of bloomed plants. We also aimed to identify if flowering is a stress-induced response as suggested from the fact that heat-sensitive but not heat-tolerant plants flowered. The transcriptomic profiles of flowered plants showed a strong metabolic activation of sugars and hormones and indications of an active transport of these solutes within the plant, most likely to induce flower initiation in the apical meristem. Preflowered plants also activated numerous epigenetic-related genes commonly used by plants to regulate the expression of key floral genes and stress-tolerance genes, which could be interpreted as a mechanism to survive and optimize reproductive success under stress conditions. Furthermore, these plants provided numerous molecular clues suggesting that the factor responsible for the massive flowering of plants from cold environments (heat-sensitive) can be considered as a stress. Heat-stress induced flowering may thus be regarded as an ultimate response to survive extreme warming events with potential adaptive consequences for the species. Fitness implications of this unexpected stress-response and the potential consequences on the phenotypic plasticity (acclimation) and evolutionary (adaptation) opportunity of the species to ocean warming are finally discussed.
Collapse
Affiliation(s)
| | | | - Juan M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, San Pedro del Pinatar, Spain
| | | |
Collapse
|
7
|
Traboni C, Mammola SD, Ruocco M, Ontoria Y, Ruiz JM, Procaccini G, Marín-Guirao L. Investigating cellular stress response to heat stress in the seagrass Posidonia oceanica in a global change scenario. MARINE ENVIRONMENTAL RESEARCH 2018; 141:12-23. [PMID: 30077343 DOI: 10.1016/j.marenvres.2018.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 05/22/2023]
Abstract
Posidonia oceanica meadows are facing global threats mainly due to episodic heat waves. In a mesocosm experiment, we aimed at disentangling the molecular response of P. oceanica under increasing temperature (20 °C-32 °C). The experiment was carried out in spring, when heat waves can potentially occur and plants are putatively more sensitive to heat stress, since they are deprived in carbohydrates reserves after the cold winter months. We aimed to identify the activation of different phases of the cellular stress response (CSR) reaction and the responsive genes activated or repressed in heated plants. A molecular traffic light was proposed as a response model including green (protein folding and membrane protection), yellow (ubiquitination and proteolysis) and red (DNA repair and apoptosis) categories. Additionally, we estimated phenological trait variations to complement the information obtained from the molecular proxies of stress. Despite reduced leaf growth rate, heated plants did not exhibit signs of irreversible damage, probably underlying species pre-adaptation to warm and fluctuating regimes. Gene expression analyses revealed that molecular chaperoning, DNA repair and apoptosis inhibition processes related genes were the ones that mostly responded to high thermal stress and will be target of further investigation and in situ proofing for assessing their use as indicators of P. oceanica performance under sub-lethal heat stress.
Collapse
Affiliation(s)
- Claudia Traboni
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Salvatore Davide Mammola
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Università Politecnica della Marche, Piazza Roma 22, 60121, Ancona, Italy
| | - Miriam Ruocco
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Yaiza Ontoria
- Department of Evolutionary Biology, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Juan M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/Varadero, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Gabriele Procaccini
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Lazaro Marín-Guirao
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
8
|
Ruiz JM, Marín-Guirao L, García-Muñoz R, Ramos-Segura A, Bernardeau-Esteller J, Pérez M, Sanmartí N, Ontoria Y, Romero J, Arthur R, Alcoverro T, Procaccini G. Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica. MARINE POLLUTION BULLETIN 2018; 134:49-54. [PMID: 29102072 DOI: 10.1016/j.marpolbul.2017.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/04/2017] [Accepted: 10/16/2017] [Indexed: 05/27/2023]
Abstract
Sexual reproduction in predominantly clonal marine plants increases recombination favoring adaptation and enhancing species resilience to environmental change. Recent studies of the seagrass Posidonia oceanica suggest that flowering intensity and frequency are correlated with warming events associated with global climate change, but these studies have been observational without direct experimental support. We used controlled experiments to test if warming can effectively trigger flowering in P. oceanica. A six-week heat wave was simulated under laboratory mesocosm conditions. Heating negatively impacted leaf growth rates, but by the end of the experiment most of the heated plants flowered, while controls plants did not. Heated and control plants were not genetically distinct and flowering intensity was significantly correlated with allelic richness and heterozygosity. This is an unprecedented finding, showing that the response of seagrasses to warming will be more plastic, more complex and potentially more resilient than previously imagined.
Collapse
Affiliation(s)
- J M Ruiz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/ Varadero, 30740 San Pedro del Pinatar, Murcia, Spain
| | - L Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - R García-Muñoz
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/ Varadero, 30740 San Pedro del Pinatar, Murcia, Spain
| | - A Ramos-Segura
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/ Varadero, 30740 San Pedro del Pinatar, Murcia, Spain
| | - J Bernardeau-Esteller
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/ Varadero, 30740 San Pedro del Pinatar, Murcia, Spain
| | - M Pérez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - N Sanmartí
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Y Ontoria
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - J Romero
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - R Arthur
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes 17300, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| | - T Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes 17300, Spain; Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, Mysore, India
| | - G Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
9
|
Sablok G, Hayward RJ, Davey PA, Santos RP, Schliep M, Larkum A, Pernice M, Dolferus R, Ralph PJ. SeagrassDB: An open-source transcriptomics landscape for phylogenetically profiled seagrasses and aquatic plants. Sci Rep 2018; 8:2749. [PMID: 29426939 PMCID: PMC5807536 DOI: 10.1038/s41598-017-18782-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 12/04/2022] Open
Abstract
Seagrasses and aquatic plants are important clades of higher plants, significant for carbon sequestration and marine ecological restoration. They are valuable in the sense that they allow us to understand how plants have developed traits to adapt to high salinity and photosynthetically challenged environments. Here, we present a large-scale phylogenetically profiled transcriptomics repository covering seagrasses and aquatic plants. SeagrassDB encompasses a total of 1,052,262 unigenes with a minimum and maximum contig length of 8,831 bp and 16,705 bp respectively. SeagrassDB provides access to 34,455 transcription factors, 470,568 PFAM domains, 382,528 prosite models and 482,121 InterPro domains across 9 species. SeagrassDB allows for the comparative gene mining using BLAST-based approaches and subsequent unigenes sequence retrieval with associated features such as expression (FPKM values), gene ontologies, functional assignments, family level classification, Interpro domains, KEGG orthology (KO), transcription factors and prosite information. SeagrassDB is available to the scientific community for exploring the functional genic landscape of seagrass and aquatic plants at: http://115.146.91.129/index.php.
Collapse
Affiliation(s)
- Gaurav Sablok
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia.
| | - Regan J Hayward
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Peter A Davey
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Rosiane P Santos
- Laboratório de Recursos Genéticos, Universidade Federal de São João Del-Rei, Campus CTAN, São João Del Rei, Minas Gerais, 36307-352, Brazil
| | - Martin Schliep
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Anthony Larkum
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Rudy Dolferus
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia.
| |
Collapse
|