1
|
Hameed A, Suchithra KV, Lin SY, Stothard P, Young CC. Genomic potential for inorganic carbon sequestration and xenobiotic degradation in marine bacterium Youngimonas vesicularis CC-AMW-E T affiliated to family Paracoccaceae. Antonie Van Leeuwenhoek 2023; 116:1247-1259. [PMID: 37740842 DOI: 10.1007/s10482-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Ecological studies on marine microbial communities largely focus on fundamental biogeochemical processes or the most abundant constituents, while minor biological fractions are frequently neglected. Youngimonas vesicularis CC-AMW-ET, isolated from coastal surface seawater in Taiwan, is an under-represented marine Paracoccaceae (earlier Rhodobacteraceae) member. The CC-AMW-ET genome was sequenced to gain deeper insights into its role in marine carbon and sulfur cycles. The draft genome (3.7 Mb) contained 63.6% GC, 3773 coding sequences and 51 RNAs, and displayed maximum relatedness (79.06%) to Thalassobius litoralis KU5D5T, a Roseobacteraceae member. While phototrophic genes were absent, genes encoding two distinct subunits of carbon monoxide dehydrogenases (CoxL, BMS/Form II and a novel form III; CoxM and CoxS), and proteins involved in HCO3- uptake and interconversion, and anaplerotic HCO3- fixation were found. In addition, a gene coding for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, form II), which fixes atmospheric CO2 was found in CC-AMW-ET. Genes for complete assimilatory sulfate reduction, sulfide oxidation (sulfide:quinone oxidoreductase, SqrA type) and dimethylsulfoniopropionate (DMSP) cleavage (DMSP lyase, DddL) were also identified. Furthermore, genes that degrade aromatic hydrocarbons such as quinate, salicylate, salicylate ester, p-hydroxybenzoate, catechol, gentisate, homogentisate, protocatechuate, 4-hydroxyphenylacetic acid, N-heterocyclic aromatic compounds and aromatic amines were present. Thus, Youngimonas vesicularis CC-AMW-ET is a potential chemolithoautotroph equipped with genetic machinery for the metabolism of aromatics, and predicted to play crucial roles in the biogeochemical cycling of marine carbon and sulfur.
Collapse
Affiliation(s)
- Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India.
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Shih-Yao Lin
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Chiu-Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
2
|
Hameed A, Lai WA, Shahina M, Stothard P, Young LS, Lin SY, Sridhar KR, Young CC. Differential visible spectral influence on carbon metabolism in heterotrophic marine flavobacteria. FEMS Microbiol Ecol 2020; 96:5710931. [PMID: 31960903 DOI: 10.1093/femsec/fiaa011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
The visible spectrum of solar radiation is known to stimulate photoheterotrophic bacterial carbon metabolism. However, its impact on 'strictly' heterotrophic bacteria remains less explored. Here, we show that heterotrophic flavobacteria exhibit enhanced uptake and mineralization of dissolved organic carbon with increasing wavelengths of visible light, without employing any 'known' light-harvesting mechanisms. RNA sequencing identified blue light as a major constraint in the extracellular enzymatic hydrolysis of polymeric carbohydrates and acquisition of sugars, despite acting as a stimulus for inorganic carbon sequestration. In contrast, green-red and continuous full-spectrum lights activated diverse hydrolytic enzymes and sugar transporters, but obstructed inorganic carbon fixation. This 'metabolic switching' was apparent through limited nutrient uptake, suppressed light-sensitivity, oxidative stress response and promotion of inorganic carbon sequestration pathways under blue light. The visible light impact on metabolism may be of significant ecological relevance as it appears to promote cell-mediated mineralization of organic carbon in 'green-colored' chlorophyll-rich copiotrophic coastal seawater and inorganic carbon sequestration in 'blue-colored' oligotrophic open ocean. Thus, a novel regulatory role played by light on heterotrophic metabolism and a hidden potential of flavobacteria to sense and respond differentially to monochromatic lights influencing marine carbon cycling were unraveled.
Collapse
Affiliation(s)
- Asif Hameed
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | - Wei-An Lai
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | - Mariyam Shahina
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 1427 College Plaza, Edmonton, Alberta, Canada
| | - Li-Sen Young
- Tetanti AgriBiotech Inc. No. 1, Gongyequ 10th Rd., Xitun Dist., Taichung 40755, Taiwan
| | - Shih-Yao Lin
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| | | | - Chiu-Chung Young
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan.,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145, XingDa Road, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Goh KM, Shahar S, Chan KG, Chong CS, Amran SI, Sani MH, Zakaria II, Kahar UM. Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms 2019; 7:E468. [PMID: 31635256 PMCID: PMC6843859 DOI: 10.3390/microorganisms7100468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Thousands of prokaryotic genera have been published, but methodological bias in the study of prokaryotes is noted. Prokaryotes that are relatively easy to isolate have been well-studied from multiple aspects. Massive quantities of experimental findings and knowledge generated from the well-known prokaryotic strains are inundating scientific publications. However, researchers may neglect or pay little attention to the uncommon prokaryotes and hard-to-cultivate microorganisms. In this review, we provide a systematic update on the discovery of underexplored culturable and unculturable prokaryotes and discuss the insights accumulated from various research efforts. Examining these neglected prokaryotes may elucidate their novelties and functions and pave the way for their industrial applications. In addition, we hope that this review will prompt the scientific community to reconsider these untapped pragmatic resources.
Collapse
Affiliation(s)
- Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Saleha Shahar
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, ZhenJiang 212013, China.
| | - Chun Shiong Chong
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Syazwani Itri Amran
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Mohd Helmi Sani
- Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| | - Ummirul Mukminin Kahar
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
4
|
Li Y, Guo XH, Dang YR, Sun LL, Zhang XY, Chen XL, Qin QL, Wang P. Complete genome sequence of Arcticibacterium luteifluviistationis SM1504 T, a cytophagaceae bacterium isolated from Arctic surface seawater. Stand Genomic Sci 2018; 13:33. [PMID: 30505389 PMCID: PMC6258284 DOI: 10.1186/s40793-018-0335-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/10/2018] [Indexed: 11/10/2022] Open
Abstract
Arcticibacterium luteifluviistationis SM1504T was isolated from Arctic surface seawater and classified as a novel genus of the phylum Bacteroides. To date, no Arcticibacterium genomes have been reported, their genomic compositions and metabolic features are still unknown. Here, we reported the complete genome sequence of A. luteifluviistationis SM1504T, which comprises 5,379,839 bp with an average GC content of 37.20%. Genes related to various stress (such as radiation, osmosis and antibiotics) resistance and gene clusters coding for carotenoid and flexirubin biosynthesis were detected in the genome. Moreover, the genome contained a 245-kb genomic island and a 15-kb incomplete prophage region. A great percentage of proteins belonging to carbohydrate metabolism especially in regard to polysaccharides utilization were found. These related genes and metabolic characteristics revealed genetic basis for adapting to the diverse extreme Arctic environments. The genome sequence of A. luteifluviistationis SM1504T also implied that the genus Arcticibacterium may act as a vital organic carbon matter decomposer in the Arctic seawater ecosystem.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
| | - Xiao-Han Guo
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
| | - Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
| | - Lin-Lin Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No.1, Wenhai Rd, Qingdao, 266237 China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No.1, Wenhai Rd, Qingdao, 266237 China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, No.1, Wenhai Rd, Qingdao, 266237 China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, No.72, Binhai Rd, Qingdao, 266237 China
| |
Collapse
|