1
|
Ahmed ASS, Billah MM, Ali MM, Bhuiyan MKA, Guo L, Mohinuzzaman M, Hossain MB, Rahman MS, Islam MS, Yan M, Cai W. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162414. [PMID: 36868275 DOI: 10.1016/j.scitotenv.2023.162414] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Cadiz, Spain
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Mohammad Mohinuzzaman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Sonapur, Bangladesh
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Wenlong Cai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
2
|
Yan ZG, Zhu XM, Zhang SW, Jiang H, Wang SP, Wei C, Wang J, Shao Y, Liu C, Wang H. Environmental DNA sequencing reveals the regional difference in diversity and community assembly mechanisms of eukaryotic plankton in coastal waters. Front Microbiol 2023; 14:1132925. [PMID: 36846757 PMCID: PMC9956185 DOI: 10.3389/fmicb.2023.1132925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
The diversity and community assembly mechanisms of eukaryotic plankton in coastal waters is so far not clear. In this study, we selected the coastal waters of Guangdong-Hong Kong-Macao Greater Bay Area, which is a highly developed region in China, as the research area. By use of high-throughput sequencing technologies, the diversity and community assembly mechanisms of eukaryotic marine plankton were studied in which a total of 7,295 OTUs were obtained, and 2,307 species were annotated by doing environmental DNA survey of 17 sites consist of surface and bottom layer. Ultimately, the analysis reveals that the species abundance of bottom layer is, by and large, higher than that in the surface layer. In the bottom, Arthropoda is the first largest group, accounting for more than 20% while Arthropoda and Bacillariophyta are dominant groups in surface waters accounting for more than 40%. It is significant of the variance in alpha-diversity between sampling sites, and the difference of alpha-diversity between bottom sites is greater than that of surface sites. The result suggests that the environmental factors that have significant influence on alpha-diversity are total alkalinity and offshore distance for surface sites, and water depth and turbidity for bottom sites. Likewise, the plankton communities obey the typical distance-decay pattern. Analysis about community assembly mechanisms reveals that, overall, dispersal limitation is the major pattern of community formation, which accounts for more than 83% of the community formation processes, suggesting that stochastic processes are the crucial assembly mechanism of the eukaryotic plankton community in the study area.
Collapse
Affiliation(s)
- Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,*Correspondence: Zhen-Guang Yan, ✉
| | - Xue-Ming Zhu
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shou-Wen Zhang
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hua Jiang
- Marine Climate Prediction and Assessment Center, National Marine Environmental Forecasting Center, Beijing, China
| | - Shu-Ping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yun Shao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China,Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hui Wang
- Frontiers Research Center, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,Marine Climate Prediction and Assessment Center, National Marine Environmental Forecasting Center, Beijing, China
| |
Collapse
|
3
|
Pires A, Cuccaro A, Sole M, Freitas R. Micro(nano)plastics and plastic additives effects in marine annelids: A literature review. ENVIRONMENTAL RESEARCH 2022; 214:113642. [PMID: 35724725 DOI: 10.1016/j.envres.2022.113642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plastic debris are dispersed in the marine environment and are consequently available to many organisms of different trophic levels, including sediment-dwelling organisms such as polychaetae. Plastic degradation generates micro (MPs) and nanoplastics (NPs) and as well as releases bounded plastic additives, increasing the ecotoxicological risk for marine organisms. Therefore, this review summarizes current knowledge on the accumulation and effects of MPs and NPs and plastic additives in polychaetes, derived from laboratory and field evidences. Thirty-six papers (from January 2011 to September 2021) were selected and analysed: about 80% of the selected works were published since 2016, confirming the emerging role of this topic in environmental sciences. The majority of the analysed manuscripts (68%) were carried out in the laboratory under controlled conditions. These studies showed that polychaetes accumulate and are responsive to this contaminant class, displaying behavioural, physiological, biochemical and immunological alterations. The polychaetes Hediste diversicolor and Arenicola marina were the most frequent used species to study MPs, NPs and plastic additive effects. The consideration of field studies revealed that MP accumulation was dependent on the plastic type present in the sediments and on the feeding strategy of the species. Polychaetes are known to play an important role in coastal and estuarine food webs and exposure to MPs, NPs and plastic additives may impair their behavioural, physiological, biochemical and immunological responses. Thus, the estimated global increase of these contaminants in the marine environment could affect the health of these benthic organisms, with consequences at population and ecosystem levels.
Collapse
Affiliation(s)
- Adília Pires
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Sole
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Tan YM, Leonard JA, Edwards S, Teeguarden J, Paini A, Egeghy P. Aggregate Exposure Pathways in Support of Risk Assessment. CURRENT OPINION IN TOXICOLOGY 2018; 9:8-13. [PMID: 29736486 DOI: 10.1016/j.cotox.2018.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of the Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.
Collapse
Affiliation(s)
- Yu-Mei Tan
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Jeremy A Leonard
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Stephen Edwards
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| | - Justin Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alicia Paini
- European Commission, Joint Research Centre, Directorate Health, Consumers and Reference Materials, Via E Fermi 2749, 21027 Ispra, Italy
| | - Peter Egeghy
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Durham, North Carolina 27709, United States
| |
Collapse
|