1
|
Vidal V, Sampognaro L, de León F, Kruk C, Perera G, Crisci C, Segura AM. A critical review of model construction and performance for nowcast systems for faecal contamination in recreational beaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176233. [PMID: 39277000 DOI: 10.1016/j.scitotenv.2024.176233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Faecal contamination is a widespread environmental and public health problem on recreational beaches around the world. The implementation of predictive models has been recommended by the World Health Organization as a complement to traditional monitoring to assist decision-makers and reduce health risks. Despite several advances that have been made in the modeling of faecal coliforms, tools and algorithms from machine learning are still scarcely used in the field and their implementation in nowcast systems is delayed. Here, we perform a literature review on modeling strategies to predict faecal contamination in recreational beaches in the last two decades and the implementation of models in nowcast systems to aid management. Models constructed for surface waters of continental (lakes, rivers and streams), estuarine and marine coastal ecosystems were analyzed and compared based on performance metrics for continuous (i.e. regression; R2, Root Mean Square Error: RMSE) and categorical (i.e. classification; accuracy, sensitivity, specificity) responses. We found 67 articles matching the search criteria and 40 with information allowing to evaluate and compare predictive ability. In early 2000, Multiple Linear Regressions were common, followed by a peak of Artificial Neural Networks (ANNs) from 2010 to 2015, and the rise of Machine learning techniques, such as decision trees (CART and Random Forest) since 2015. ANNs and decision trees presented better accuracy than the remaining models. Rainfall and its lags were important predictor variables followed by water temperature. Specificity was much higher than sensitivity in all modeling strategies, which is typical in data sets where one category (e.g. closed beach) is far less common than the normal state (i.e. unbalanced data sets). We registered the implementation of statistical models in early warning systems in 6 countries, mainly by public beach quality management institutions, followed by NGOs in conjunction with universities. We identified critical steps towards improving model construction, evaluation and usage: i) the need to balance the data set previous to model training, ii) the need to separate data set in training, validation and test to perform an honest evaluation of model performance and iii) the transduction of model outputs to plain language to relevant stakeholders. Integrating into a single framework in situ monitoring, model construction and nowcasting systems could help to improve decision making systems to protect users from bathing in contaminated waters. Still the reduction of arrival of faecal coliforms to aquatic ecosystems (e.g. by improving sewage treatment systems) will be the ultimate factor in reducing health risk.
Collapse
Affiliation(s)
- Victoria Vidal
- Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay.
| | - Lia Sampognaro
- Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay
| | - Fernanda de León
- Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay
| | - Carla Kruk
- Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay
| | - Gonzalo Perera
- Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay
| | - Carolina Crisci
- Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay
| | - Angel M Segura
- Departamento Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), CURE-Rocha, Universidad de la República, Ruta Nacional N°9 intersección Ruta N°15, Rocha 27000, Uruguay
| |
Collapse
|
2
|
Tang MLY, Lau SCK. Effects of chlorination on the survival of sewage bacteria in seawater microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13216. [PMID: 37990630 PMCID: PMC10866060 DOI: 10.1111/1758-2229.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Chlorination is a commonly used disinfection method in sewage treatment process. However, resistant bacteria may survive chlorination and enter the receiving aquatic environment upon effluent discharge. There has been limited research on the effects of chlorination on bacterial survival in seawater. To address this knowledge gap, microcosm experiments were conducted to simulate the discharge of chlorinated effluents into coastal seawater. The results revealed that bacterial communities in seawater-based effluents survived better in seawater than those in freshwater-based effluents. High chlorine dosages could significantly reduce the viable bacterial populations and their chance of regrowth in seawater. Additionally, faecal indicator bacteria (FIB) that entered the viable but non-culturable (VBNC) state under chlorination tended to persist in the VBNC state without resuscitation during seawater incubation. Because of the prevalence of VBNC indicator bacteria, qPCR quantification of FIB was more effective than conventional culture-based methods in tracing viable pathogenic chlorine-resistant bacteria, although the correlation strength varied depending on the type of effluent. This study sheds light on how chlorine dosages and the intrinsic properties of effluents affect bacterial survival in seawater and highlights the potential and limitations of using FIB in monitoring the health risks associated with the discharge of chlorinated effluents.
Collapse
Affiliation(s)
- Mandy Lok Yi Tang
- Department of Ocean ScienceHong Kong University of Science and TechnologyHong KongChina
| | - Stanley Chun Kwan Lau
- Department of Ocean ScienceHong Kong University of Science and TechnologyHong KongChina
- Center for Ocean Research in Hong Kong and MacauHong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
3
|
Le ND, Hoang TTH, Nguyen TMH, Rochelle-Newall E, Pham TMH, Phung TXB, Duong TT, Nguyen TAH, Dinh LM, Duong TN, Nguyen TD, Le TPQ. Microbial contamination in the coastal aquaculture zone of the Ba Lat river mouth, Vietnam. MARINE POLLUTION BULLETIN 2023; 192:115078. [PMID: 37210986 DOI: 10.1016/j.marpolbul.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Contamination of aquaculture products by pathogenic organisms is a major concern in areas where this activity is of high economic importance. The abundances of total coliforms (TC), Escherichia coli (EC) and faecal streptococci (FS) (in CFU.100 mL-1) in seawater in the Red River coastal aquaculture zone were determined. The results showed TC numbers (200 to 9100; average 1822), EC (<100 to 3400; average 469) and FS (<100 to 2100; average 384), of which TC exceeded the allowable threshold of the Vietnam regulation for coastal aquaculture water. TC and EC numbers in 4 wastewater types (domestic, livestock farming sewage, agricultural runoff, and mixed sewage canals) were investigated and revealed the importance of point sources of faecal contamination in seawater. These results underline the need to reduce the release of untreated wastewater and to put into place seawater microbial quality monitoring in areas where the development of sustainable aquaculture is an objective.
Collapse
Affiliation(s)
- Nhu Da Le
- Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Thu Ha Hoang
- Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Mai Huong Nguyen
- Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Emma Rochelle-Newall
- Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Sorbonne University, University Paris-Est Créteil, IRD, CNRS, INRA, Paris, France
| | - Thi Minh Hanh Pham
- Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi, Viet Nam
| | - Thi Xuan Binh Phung
- Electric Power University, 235 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Viet Nam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Anh Huong Nguyen
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Le Minh Dinh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Thanh Nghi Duong
- Institute of Marine Environment and Natural Resources, Vietnam Academy of Science and Technology, Hai Phong, Viet Nam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam
| | - Thi Phuong Quynh Le
- Laboratory of Environmental Chemistry, Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
4
|
Koh XP, Shen Z, Woo CF, Yu Y, Lun HI, Cheung SW, Kwan JKC, Lau SCK. Genetic and Ecological Diversity of Escherichia coli and Cryptic Escherichia Clades in Subtropical Aquatic Environments. Front Microbiol 2022; 13:811755. [PMID: 35250929 PMCID: PMC8891540 DOI: 10.3389/fmicb.2022.811755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli not only inhabit the large intestines of human and warm-blooded animals but could also persist in the external environment. However, current knowledge was largely based on host-associated strains. Moreover, cryptic Escherichia clades that were often misidentified as E. coli by conventional diagnostic methods were discovered. Failure to distinguish them from E. coli sensu stricto could lead to inaccurate conclusions about the population genetics of E. coli. Based on seven housekeeping genes, we determine the genetic and ecological diversity of E. coli and cryptic clades as they occupy aquatic habitats with different characteristics and human impact levels in subtropical Hong Kong. Contrary to previous reports, clade II was the most abundant cryptic lineage co-isolated with E. coli, being especially abundant in relatively pristine subtropical aquatic environments. The phylogenetically distinct cryptic clades and E. coli showed limited recombination and significant genetic divergence. Analyses indicated that these clade II strains were ecologically differentiated from typical E. coli; some may even represent novel environmental Escherichia clades that were closely related to the original clade II strains of fecal origins. E. coli of diverse origins exhibited clonality amidst divergent genotypes STs, echoing other studies in that recombination in housekeeping genes was insufficient to disrupt phylogenetic signals of the largely clonal E. coli. Notably, environmental E. coli were less diverse than fecal isolates despite contributing many new alleles and STs. Finally, we demonstrated that human activities influenced the distribution of E. coli and clade II in a small aquatic continuum. Moving from relatively pristine sites toward areas with higher human disturbance, the abundance of clade II isolates and new E. coli genotypes reduces, while E. coli bearing class I integrons and belonging to CCs of public health concern accumulates. Altogether, this work revealed the new genetic diversity of E. coli and cryptic clades embedded in selected subtropical aquatic habitats, especially relatively pristine sites, which will aid a more thorough understanding of the extent of their genetic and functional variations in relation to diverse habitats with varied conditions.
Collapse
Affiliation(s)
- Xiu Pei Koh
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Zhiyong Shen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chun Fai Woo
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yanping Yu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hau In Lun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sze Wan Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Joseph Kai Cho Kwan
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Stanley Chun Kwan Lau
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Stanley Chun Kwan Lau,
| |
Collapse
|
5
|
Akita LG, Laudien J, Biney C, Akrong MO. A baseline study of spatial variability of bacteria (total coliform, E. coli, and Enterococcus spp.) as biomarkers of pollution in ten tropical Atlantic beaches: concern for environmental and public health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50941-50965. [PMID: 34386920 DOI: 10.1007/s11356-021-15432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges, and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters (e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horiba multiple parameter probe. Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate (55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana, suggesting faecal contamination, which can pose health risks. The mean ± standard deviations of bacteria loads in beach water are total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp. (6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contamination in the tropical Atlantic region.
Collapse
Affiliation(s)
- Lailah Gifty Akita
- Department of Marine and Fisheries Sciences, University of Ghana, P. O. Box LG 99, Legon, Accra, Ghana.
| | - Juergen Laudien
- Alfred Wegner Institute Helmholtz Centre of Polar and Marine Research, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - Charles Biney
- Ecosystems Environmental Solutions, GD-213-5404, Accra, Ghana
| | - Mark Osei Akrong
- CSIR-Research Institute, P.O. Box M 32, GP-018-964, Accra, Ghana
| |
Collapse
|
6
|
Kim M, Ligaray M, Kwon YS, Kim S, Baek S, Pyo J, Baek G, Shin J, Kim J, Lee C, Kim YM, Cho KH. Designing a marine outfall to reduce microbial risk on a recreational beach: Field experiment and modeling. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124587. [PMID: 33303212 DOI: 10.1016/j.jhazmat.2020.124587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/10/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
A marine outfall can be a wastewater management system that discharges sewage and stormwater into the sea; hence, it is a source of microbial pollution on recreational beaches, including antibiotic resistant genes (ARGs), which lead to an increase in untreatable diseases. In this regard, a marine outfall must be efficiently located to mitigate these risks. This study aimed to 1) investigate the spatiotemporal variability of Escherichia coli (E. coli) and ARGs on a recreational beach and 2) design marine outfalls to reduce microbial risks. For this purpose, E. coli and ARGs with influential environmental variables were intensively monitored on Gwangalli beach, South Korea in this study. Environmental fluid dynamic code (EFDC) was used and calibrated using the monitoring data, and 12 outfall extension scenarios were explored (6 locations at 2 depths). The results revealed that repositioning the marine outfall can significantly reduce the concentrations of E. coli and ARGs on the beach by 46-99%. Offshore extended outfalls at the bottom of the sea reduced concentrations of E. coli and ARGs on the beach more effectively than onshore outfalls at the sea surface. These findings could be helpful in establishing microbial pollution management plans at recreational beaches in the future.
Collapse
Affiliation(s)
- Minjeong Kim
- Division of Radioactive Waste Disposal Research, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Mayzonee Ligaray
- Institute of Environmental Science and Meteorology, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Yong Sung Kwon
- Ecosystem Service Team, Division of Ecological Assessment, National Institute of Ecology, Seocheon 33657, Republic of Korea
| | - Soobin Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Sangsoo Baek
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - JongCheol Pyo
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Gahyun Baek
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Devane ML, Moriarty E, Weaver L, Cookson A, Gilpin B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. WATER RESEARCH 2020; 185:116204. [PMID: 32745743 DOI: 10.1016/j.watres.2020.116204] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In tropical to temperate environments, fecal indicator bacteria (FIB), such as enterococci and Escherichia coli, can persist and potentially multiply, far removed from their natural reservoir of the animal gut. FIB isolated from environmental reservoirs such as stream sediments, beach sand and vegetation have been termed "naturalized" FIB. In addition, recent research suggests that the intestines of poikilothermic animals such as fish may be colonized by enterococci and E. coli, and therefore, these animals may contribute to FIB concentrations in the aquatic environment. Naturalized FIB that are derived from fecal inputs into the environment, and subsequently adapted to maintain their population within the non-host environment are termed "naturalized enteric FIB". In contrast, an additional theory suggests that some "naturalized" FIB diverged from enteric FIB many millions of years ago and are now normal inhabitants of the environment where they are referred to as "naturalized non-enteric FIB". In the case of the Escherichia genus, the naturalized non-enteric members are identified as E. coli during routine water quality monitoring. An over-estimation of the health risk could result when these naturalized, non-enteric FIB, (that is, not derived from avian or mammalian fecal contamination), contribute to water quality monitoring results. It has been postulated that these environmental FIB belonging to the genera Escherichia and Enterococcus can be differentiated from enteric FIB by genetic methods because they lack some of the genes required for colonization of the host intestine, and have acquired genes that aid survival in the environment. Advances in molecular tools such as next generation sequencing will aid the identification of genes peculiar or "enriched" in particular habitats to discriminate between enteric and environmental FIB. In this appraisal, we have reviewed the research studying "naturalized" FIB, and discussed the techniques for their differentiation from enteric FIB. This differentiation includes the important distinction between enteric FIB derived from fresh and non-recent fecal inputs, and those truly non-enteric environmental microbes, which are currently identified as FIB during routine water quality monitoring. The inclusion of tools for the identification of naturalized FIB (enteric or environmental) would be a valuable resource for future studies assessing water quality.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Elaine Moriarty
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Adrian Cookson
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|