1
|
Liu D, Kang G, Zhang Y, Shi L, Ma B, Zhang S, Lu G. Exploring the distribution and fate of bisphenol A in an aquatic microcosm combined with a multimedia model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117752. [PMID: 39842170 DOI: 10.1016/j.ecoenv.2025.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Bisphenol A (BPA), a well-known endocrine-disrupting chemical, has garnered significant attention in environmental science and policy. BPA can enter the aquatic environment through different routes, posing potential risks even at a low concentration. In this study, a four-compartment system [water, sediment, biota (zebrafish), and submerged aquatic vegetation (Vallisneria natans)] of a point source continuous discharge microcosm was established to investigate the distribution and fate of BPA in an aquatic microcosm. The fugacity model generated predicted values were highly consistent with those of the experiments. The distribution of BPA in the model indicates that sediment was the dominant sink. The residence time of reaction and advection was 5.8 and 75.2 d, respectively, which showed that BPA was mainly removed from the aquatic microcosm through the reaction in biota (58 %). Sensitivity analysis revealed that emission data were the most influential parameters for the model output. Transfer processes between the water and biota phases had a closer relationship. This study provides technical support for pollution source management and risk assessment for BPA.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Pharmaceutical and Biomaterials, Lianyungang Normal College, Sheng Hu Lu 28, Lianyungang 222006, China
| | - Guodong Kang
- Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yixi Zhang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Shi
- Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bo Ma
- Institute of Pharmaceutical and Biomaterials, Lianyungang Normal College, Sheng Hu Lu 28, Lianyungang 222006, China
| | - Shenghu Zhang
- Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guojian Lu
- Institute of Pharmaceutical and Biomaterials, Lianyungang Normal College, Sheng Hu Lu 28, Lianyungang 222006, China.
| |
Collapse
|
2
|
Tedesco P, Balzano S, Coppola D, Esposito FP, de Pascale D, Denaro R. Bioremediation for the recovery of oil polluted marine environment, opportunities and challenges approaching the Blue Growth. MARINE POLLUTION BULLETIN 2024; 200:116157. [PMID: 38364643 DOI: 10.1016/j.marpolbul.2024.116157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.
Collapse
Affiliation(s)
- Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Sergio Balzano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; Institute of Biochemistry and Cellular Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Renata Denaro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti Rome, Italy.
| |
Collapse
|
3
|
Guo Y, Wang C, Huang P, Li J, Qiu C, Bai Y, Li C, Yu J. A method for simulating spatial fates of chemicals in flowing lake systems: Application to phthalates in a lake. WATER RESEARCH 2023; 232:119715. [PMID: 36796154 DOI: 10.1016/j.watres.2023.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
In order to describe spatio-temporal distribution of chemicals in flowing lake systems, a dynamic multimedia fate model of chemicals with spatial differentiation was constructed by coupling the level IV fugacity model with lake hydrodynamics. It was successfully applied to four phthalates (PAEs) in a lake recharged by reclaimed water and its accuracy was verified. Results show that under the long-term influence of flow field, the distributions of PAEs in both lake water and sediment have significant spatial heterogeneity of 2∼5 orders of magnitude, but present different distribution rules, which was explained by analysis of PAE transfer fluxes. The spatial distribution of PAEs in the water column depends on hydrodynamic conditions and whether the primary source is reclaimed water or atmospheric input. Slow water exchange and flow speed promote the migration of PAEs from water to sediment, causing them to always accumulate in sediments far away from the recharging inlet. Uncertainty and sensitivity analysis show that the PAE concentrations in water phase are mainly affected by emission and physicochemical parameters, while those in sediment phase are also sensitive to environmental parameters. The model can provide important information and accurate data support for the scientific management of chemicals in flowing lake systems.
Collapse
Affiliation(s)
- Yaqi Guo
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Panpan Huang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300457, China
| | - Jing Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Beijing Branch of North China Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100081, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, No. 26 Jinjing Road, Xiqing District, Tianjin 300384, China
| |
Collapse
|
4
|
Vingiani GM, Leone S, De Luca D, Borra M, Dobson ADW, Ianora A, De Luca P, Lauritano C. First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152535. [PMID: 34942245 DOI: 10.1016/j.scitotenv.2021.152535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Diatoms are photosynthetic organisms with potential biotechnological applications in the bioremediation sector, having shown the capacity to reduce environmental concentrations of different pollutants. The diatom Cylindrotheca closterium is known to degrade di-n-butyl phthalate (DBP), one of the most abundant phthalate esters in aquatic environments and a known endocrine-disrupting chemical. In this study, we present for the first time the in silico identification of two putative DBP hydrolases (provisionally called DBPH1 and DBPH2) in the transcriptome of C. closterium. We modeled the structure of both DBPH1-2 and their proposed interactions with the substrate to gain insights into their mechanism of action. Finally, we analyzed the expression levels of the two putative hydrolases upon exposure of C. closterium to different concentrations of DBP (5 and 10 mg/l) for 24 and 48 h. The data showed a DBP concentration-dependent increase in expression levels of both dbph1 and 2 genes, further highlighting their potential involvement in phthalates degradation. This is the first identification of phthalate-degrading enzymes in microalgae, providing new insights into the possible use of diatoms in bioremediation strategies targeting phthalates.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniele De Luca
- Department of Biology, University of Naples Federico II, Botanic Garden of Naples, Via Foria 223, 80139 Naples, Italy
| | - Marco Borra
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, CAP80121, NA, Italy
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland; Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland
| | - Adrianna Ianora
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, CAP80121, NA, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
5
|
Zhang F, Zhao D, Chi J. Impact of different environmental particles on degradation of dibutyl phthalate in coastal sediments with and without Cylindrotheca closterium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114228. [PMID: 32092628 DOI: 10.1016/j.envpol.2020.114228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the impact of different environmental particles at different concentrations (0.2% and 2%, w/w) on biodegradation of dibutyl phthalate (DBP) in sediments with and without Cylindrotheca closterium, a marine benthic diatom. The particles included biochar pyrolyzed at 400 °C, multi-walled carbon nanotube (MWNT), nanoscale zero-valent iron (nZVI) and polyethylene microplastic. In treatments without C. closterium, inhibition effect of the particles on degradation percentage of DBP (up to 15.7% decrement except 1.7% increment for 0.2% nZVI) increased with the increase of particle sorption ability to DBP and particle concentration in general. The results of 16s rDNA sequencing showed that C. closterium was probably the most abundant DBP-degrader, accounting for 20.0-49.3% of the total taxon read numbers. In treatments with C. closterium, inoculation of C. closterium increased the degradation percentage of DBP in all treatments with particle addition by 0.0-11.3%, which increased with the increase of chlorophyll a content in general but decreased with the increase of particle concentration from 0.2% to 2%. The increment was the highest for treatment with 0.2% nZVI addition due to its highest promotion effect on algal growth. In contrast, the increment was the lowest for treatments with MWNT addition due to its strong sorption to DBP and strong inhibition on the growth of C. closterium. Our findings suggested that the environmental particles could influence bioavailability of DBP by sorption and biomass of C. closterium, and thus degradation of DBP in sediments.
Collapse
Affiliation(s)
- Fan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Dongxu Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
6
|
Xu W, Wang J, Tan L, Guo X, Xue Q. Variation in allelopathy of extracellular compounds produced by Cylindrotheca closterium against the harmful-algal-bloom dinoflagellate Prorocentrum donghaiense. MARINE ENVIRONMENTAL RESEARCH 2019; 148:19-25. [PMID: 31077964 DOI: 10.1016/j.marenvres.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Allelopathy between algae is an ecological strategy that can facilitate or inhibit the occurrence of algal blooms. The role of allelopathic effects of marine microalgae Cylindrotheca closterium in other phytoplankton population dynamics are still limited. In the current study, the effects of cell-free filtrates of diatom Cylindrotheca closterium on two common dinoflagellates (Prorocentrum donghaiense and Prorocentrum cordatum), a chrysophyceae (Isochrysis galbana) and a diatom (Chaetoceros curvisetus) were investigated within controlled laboratory experiments. It was observed that the growth of P. donghaiense was significantly suppressed and approximately 80% cells disappeared after 8-d exposure, while the other three algae was less sensitive. P. donghaiense was very sensitive to the exudates of C. closterium from the stationary phase by comparing various percentage (10, 30, 50, 70 and 100%) of filtrates. In addition, the allelopathic effects of extracellular compounds of C. closterium extracted by three different organic solvents (ethyl acetate, chloroform and petroleum ether) on P. donghaiense were explored by determining cell density, chlorophyll content and maximum photosystem II (PSII) quantum yield (Fv/Fm). It was found that the compounds extracted by ethyl acetate and chloroform appeared to exhibit less toxicity on P. donghaiense than that of petroleum ether. The present results indicated that the allelochemicals released by C. closterium might be concentrated effectively in the petroleum ether extraction phase, which provided a new perspective for controlling the red tides of P. donghaiense in the East China Sea by means of the ecological inhibitors extracted.
Collapse
Affiliation(s)
- Wenjing Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xin Guo
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Qiaona Xue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|