1
|
Xia F, Fan T, Wang M, Yang L, Ding D, Wei J, Zhou Y, Jiang D, Deng S. Biodegradation of CAHs and BTEX in groundwater at a multi-polluted pesticide site undergoing natural attenuation: Insights from identifying key bioindicators using machine learning methods based on microbiome data. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117609. [PMID: 39893882 DOI: 10.1016/j.ecoenv.2024.117609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025]
Abstract
Groundwater pollution, particularly in retired pesticide sites, is a significant environmental concern due to the presence of chlorinated aliphatic hydrocarbons (CAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX). These contaminants pose serious risks to ecosystems and human health. Natural attenuation (NA) has emerged as a sustainable solution, with microorganisms playing a crucial role in pollutant biodegradation. However, the interpretation of the diverse microbial communities in relation to complex pollutants is still challenging, and there is limited research in multi-polluted groundwater. Advanced machine learning (ML) algorithms help identify key microbial indicators for different pollution types (CAHs, BTEX plumes, and mixed plumes). The accuracy and Area Under the Curve (AUC) achieved by Support Vector Machines (SVM) were impressive, with values of 0.87 and 0.99, respectively. With the assistance of model explanation methods, we identified key bioindicators for different pollution types which were then analyzed using co-occurrence network analysis to better understand their potential roles in pollution degradation. The identified key genera indicate that oxidation and co-metabolism predominantly drive dechlorination processes within the CAHs group. In the BTEX group, the primary mechanism for BTEX degradation was observed to be anaerobic degradation under sulfate-reducing conditions. However, in the CAHs&BTEX groups, the indicative genera suggested that BTEX degradation occurred under iron-reducing conditions and reductive dechlorination existed. Overall, this study establishes a framework for harnessing the power of ML alongside co-occurrence network analysis based on microbiome data to enhance understanding and provide a robust assessment of the natural attenuation degradation process at multi-polluted sites.
Collapse
Affiliation(s)
- Feiyang Xia
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengjie Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Da Ding
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dengdeng Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
2
|
von Hellfeld R, Hastings A. An approach to assessing subsea pipeline-associated mercury release into the North Sea and its potential environmental and human health impact. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230943. [PMID: 38481980 PMCID: PMC10935551 DOI: 10.1098/rsos.230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 04/26/2024]
Abstract
Mercury is a naturally occurring heavy metal that has also been associated with anthropogenic sources such as cement production or hydrocarbon extraction. Mercury is a contaminant of concern as it can have a significant negative impact on organismal health when ingested. In aquatic environments, it bioaccumulates up the foodweb, where it then has the potential to impact human health. With the offshore hydrocarbon platforms in the North Sea nearing decommissioning, they must be assessed as a potential source for the environmental release of mercury. International treaties govern the handling of materials placed in the ocean. Studies have assessed the ecologic and economic benefits of (partial) in situ abandonment of the infrastructure as artificial reefs. This can be applied to pipelines after substantial cleaning to remove mercury accumulation from the inner surface. This work outlines the application of an approach to modelling marine mercury bioaccumulation for decommissioning scenarios in the North Sea. Here, in situ decommissioning of cleaned pipelines was unlikely to have a negative impact on the North Sea food web or human health. However, significant knowledge gaps have been determined, which must be addressed before all negative impacts on ecosystems and organismal health can be excluded.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, AberdeenAB24 3UL, UK
- National Decommissioning Centre, Main Street, NewburghAB41 6AA, UK
| | - Astley Hastings
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, AberdeenAB24 3UL, UK
- National Decommissioning Centre, Main Street, NewburghAB41 6AA, UK
| |
Collapse
|
3
|
Costa LC, Carvalho CF, Soares ASF, Souza ACP, Bastos EFT, Guimarães ECBT, Santos JC, Carvalho T, Calderari VH, Marinho LS, Marques MRC. Physical and chemical characterization of drill cuttings: A review. MARINE POLLUTION BULLETIN 2023; 194:115342. [PMID: 37634349 DOI: 10.1016/j.marpolbul.2023.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Drill cuttings comprise a mixture of rocks generated during drilling activities of exploration and production of oil and gas. These residues' properties are variable, depending on several drilling parameters and drilled rock composition. Many scientific studies have been published regarding the characterization of these residues. Articles summarizing these residues' characteristics and toxicity data are poorly explored in the literature. This work reviews the principal methods used to characterize drill cuttings and data about these residues' properties. Some authors have reported the large content of Zn in drill cuttings. These cuttings can be associated with base fluids (as olefins, varying from C11 to C18), and some time crude oil (high range of TPH, unresolved complex mixtures, and PAH compounds). Acute and chronic toxicity tests have shown negative impacts of different types of fluids, the components of these fluids, and cuttings on other marine organisms.
Collapse
Affiliation(s)
- L C Costa
- Pharmacy Department, Faculty of Biological Sciences and Health, State University of Rio de Janeiro (UERJ), Rio de Janeiro 23070-200, RJ, Brazil.
| | - C F Carvalho
- Pharmacy Department, Faculty of Biological Sciences and Health, State University of Rio de Janeiro (UERJ), Rio de Janeiro 23070-200, RJ, Brazil
| | - A S F Soares
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - A C P Souza
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - E F T Bastos
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - E C B T Guimarães
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - J C Santos
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - T Carvalho
- Pharmacy Department, Faculty of Biological Sciences and Health, State University of Rio de Janeiro (UERJ), Rio de Janeiro 23070-200, RJ, Brazil; Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - V H Calderari
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| | - L S Marinho
- Environmental Engineering Program, Polytechnic School, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - M R C Marques
- Department of Organic Chemistry, Institute of Chemistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-900, RJ, Brazil
| |
Collapse
|
4
|
Hu Y, Mu S, Zhang J, Li Q. Regional distribution, properties, treatment technologies, and resource utilization of oil-based drilling cuttings: A review. CHEMOSPHERE 2022; 308:136145. [PMID: 36029858 DOI: 10.1016/j.chemosphere.2022.136145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Oil-based drilling cuttings (OBDC) are hazardous wastes produced during the extensive use of oil-based drilling mud in oil and gas exploration and development. They have strong mutagenic, carcinogenic, and teratogenic effects and need to be properly disposed of to avoid damaging the natural environment. This paper reviews the recent research progress on the regional distribution, properties, treatment technologies, and resource utilization of OBDC. The advantages and disadvantages of different technologies for removing petroleum pollutants from OBDC were comprehensively analyzed, and required future developments in treatment technologies were proposed.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jingjing Zhang
- Sichuan Solid Waste and Chemicals Management Center, Chengdu, 610036, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
5
|
McLaren DEK, Rawlins AJ. Occurrence of alkylphenols and alkylphenol ethoxylates in North Sea sediment samples collected across oil and gas fields. MARINE POLLUTION BULLETIN 2022; 178:113655. [PMID: 35461021 DOI: 10.1016/j.marpolbul.2022.113655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Alkylphenol ethoxylates (APEs) have been used in several offshore oil and gas production applications including as emulsifiers in drilling mud formulations, which may have resulted in their disposal to sea. Despite concern over the endocrine disrupting potential of their alkylphenol (AP) degradation products, information on the presence of AP/APEs in marine sediments in the vicinity of oil and gas production facilities is scarce. This paper presents the occurrence of AP/APEs in marine sediment in North Sea oil and gas fields. The concentrations of octylphenol, nonylphenol and their ethoxylates near offshore installations were broadly comparable to, or higher than those of coastal and estuarine point source discharges. When compared to environmental assessment criteria, the NPCA Class V threshold values for octylphenol and nonylphenol were exceeded within 100 m and 500 m of infrastructure respectively, with higher concentrations of AP/APEs reported in fields that came online prior to 1986.
Collapse
Affiliation(s)
- Diana E K McLaren
- Fugro, 1-9 The Curve, 32 Research Avenue North, Heriot-Watt University, Riccarton, Edinburgh EH14 4AP, UK
| | - Andrew J Rawlins
- Fugro, 1-9 The Curve, 32 Research Avenue North, Heriot-Watt University, Riccarton, Edinburgh EH14 4AP, UK.
| |
Collapse
|
6
|
Profiling of Indigenous Biosurfactant-Producing Bacillus Isolates in the Bioremediation of Soil Contaminated by Petroleum Products and Olive Oil. Int J Microbiol 2021; 2021:9565930. [PMID: 34567125 PMCID: PMC8463192 DOI: 10.1155/2021/9565930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Petroleum is, up to this date, an inimitable nonrenewable energy resource. Petroleum leakage, which arises during transport, storage, and refining, is the most important contaminant in the environment, as it produces harm to the surrounding ecosystem. Bioremediation is an efficient method used to treat petroleum hydrocarbon-contaminated soil using indigenous microorganisms. The degradation characteristics for a variety of hydrocarbons (hexane, benzene, gasoline, and diesel) were qualitatively and quantitatively investigated using Bacillus isolates. Microbiological and biochemical methods have been used including isolation of oil-degrading bacteria, enzymatic activities, the determination of physicochemical parameters, biosurfactant production and extraction assay, oil displacement assay, antimicrobial assay of the biosurfactants, and bioremediation kinetics. Consequently, of the 60 isolates capable of degrading different hydrocarbons at fast rates, 34 were suspected to be Bacillus isolates capable of growing in 24 h or 48 h on BH medium supplemented with 2% of hexane, benzene, gasoline, diesel, and olive oil, respectively. Among the 34 isolates, 61% (21/34) are capable of producing biosurfactant-like molecules by using gasoline, 70% (24/34) with diesel oil, 85% (29/34) with hexane, and 82% (28/34) with benzene. It was found that biosurfactant-producing isolates are extractable with HCl (100%), ammonium sulphate (95%), chloroform (95%), and ethanol (100%). Biosurfactants showed stability at 20°C, 37°C, 40°C, and 60°C. Biosurfactant secreted by Bacillus strains has shown an antagonistic effect in Escherichia coli, Shigella flexneri 5a M90T, and Bacillus cereus. The selected isolates could therefore be safely used for biodegradation. Substrate biodegradation patterns by individual isolates were found to significantly differ. The study shows that benzene was degraded faster, followed by hexane, gasoline, and finally diesel. The Bacillus consortium used can decrease hydrocarbon content from 195 to 112 (g/kg) in 15 days.
Collapse
|
7
|
Nguyen TT, Paulsen JE, Landfald B. Seafloor deposition of water-based drill cuttings generates distinctive and lengthy sediment bacterial community changes. MARINE POLLUTION BULLETIN 2021; 164:111987. [PMID: 33515825 DOI: 10.1016/j.marpolbul.2021.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The spatial extent and persistence of bacterial change caused by deposition of water-based drill cuttings on the seafloor were explored by a community-wide approach. Ten centimeter sediment cores were sampled along transects extending from ≤15 m to 250 m from three nearby drilling sites in the southern Barents Sea. Eight months, 8 years and 15 years, respectively, had passed since the completion of the drillings. At locations heavily affected by drill cuttings, the two most recent sites showed distinct, corresponding deviances from native Barents Sea bacterial community profiles. Otherwise marginal groups, including Mollicutes and Clostridia, showed significant increases in relative abundance. Beyond 100 m from the boreholes the microbiotas appeared undisturbed, as they did at any distance from the 15-years old borehole. The extent of the biological distortion, as indicated by the present microbial study, agreed with previously published macrofaunal surveys at the same drilling sites.
Collapse
Affiliation(s)
- Tan T Nguyen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway.
| | | | - Bjarne Landfald
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway.
| |
Collapse
|
8
|
Laczi K, Erdeiné Kis Á, Szilágyi Á, Bounedjoum N, Bodor A, Vincze GE, Kovács T, Rákhely G, Perei K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front Microbiol 2020; 11:590049. [PMID: 33304336 PMCID: PMC7701123 DOI: 10.3389/fmicb.2020.590049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The accumulation of petroleum hydrocarbons in the environment substantially endangers terrestrial and aquatic ecosystems. Many microbial strains have been recognized to utilize aliphatic and aromatic hydrocarbons under aerobic conditions. Nevertheless, most of these pollutants are transferred by natural processes, including rain, into the underground anaerobic zones where their degradation is much more problematic. In oxic zones, anaerobic microenvironments can be formed as a consequence of the intensive respiratory activities of (facultative) aerobic microbes. Even though aerobic bioremediation has been well-characterized over the past few decades, ample research is yet to be done in the field of anaerobic hydrocarbon biodegradation. With the emergence of high-throughput techniques, known as omics (e.g., genomics and metagenomics), the individual biodegraders, hydrocarbon-degrading microbial communities and metabolic pathways, interactions can be described at a contaminated site. Omics approaches provide the opportunity to examine single microorganisms or microbial communities at the system level and elucidate the metabolic networks, interspecies interactions during hydrocarbon mineralization. Metatranscriptomics and metaproteomics, for example, can shed light on the active genes and proteins and functional importance of the less abundant species. Moreover, novel unculturable hydrocarbon-degrading strains and enzymes can be discovered and fit into the metabolic networks of the community. Our objective is to review the anaerobic hydrocarbon biodegradation processes, the most important hydrocarbon degraders and their diverse metabolic pathways, including the use of various terminal electron acceptors and various electron transfer processes. The review primarily focuses on the achievements obtained by the current high-throughput (multi-omics) techniques which opened new perspectives in understanding the processes at the system level including the metabolic routes of individual strains, metabolic/electric interaction of the members of microbial communities. Based on the multi-omics techniques, novel metabolic blocks can be designed and used for the construction of microbial strains/consortia for efficient removal of hydrocarbons in anaerobic zones.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ágnes Erdeiné Kis
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | | | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|