1
|
Alzahrani FM, Alzahrani KJ, Alsharif KF, Hayat MF, Al-Emam A. Afzelechin alleviates deltamethrin induced hepatic dysfunction via regulating TLR4/MyD88, HMGB1/RAGE and NF-κB pathway. Toxicol Appl Pharmacol 2025; 497:117275. [PMID: 39971138 DOI: 10.1016/j.taap.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Deltamethrin (DMN) is a type-II pyrethroid that has been documented to instigate numerous organ toxicities. Afzelechin (ALN) is a plant based polyphenolic compound that exhibits marvelous biological properties. The present research was conducted to assess the alleviative potential of ALN against DMN induced hepatic dysregulations. Thirty-six male albino (Sprague Dawley) rats were apportioned into four random groups including the control, DMN (5mgkg-1), DMN (5mgkg-1) + ALN (2mgkg-1), and ALN (2mgkg-1) alone administrated group. ALN protected hepatic tissues against DMN induced oxidative stress, inflammation and apoptosis. ALN supplementation donwregulated the gene expression of receptor for advanced glycation end products (RAGE), high mobility group box1 (HMGB1), tumor necrosis factor- α (TNF-α), Myeloid differentiation primary response 88 (MyD88), nuclear factor- kappa B (NF-κB), interleukin-6 (IL-6), toll-like receptor 4 (TLR4), cyclooxygenase-2 (COX-2), and interleukin-1β (IL-1β). Besides, ALN administration reduced the levels of reactive oxygen species (ROS) and malondialdehyde while increasing the activities of glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GSR), heme oxygenase-1 (HO-1), superoxide dismutase (SOD) and glutathione (GSH). The levels of hepatic function markers including GGT, ALT, ALP, and AST were lowered while the concentrations of albumin and total proteins were promoted following the ALN treatment. The levels of Bax, Caspase-9 and Caspase-3 were suppressed while the levels of Bcl-2 were escalated after ALN therapy. Moreover, ALN treatment remarkably mitigated DMN induced histological impairments. These findings highlight the hepatoprotective efficacy of ALN against DMN induced liver toxicity.
Collapse
Affiliation(s)
- Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Bao R, Yang Y, Chen H, Li Y. Occurrence, distribution and health risk assessment of quinolone residues in cultured fish in southeast China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:714-724. [PMID: 39449629 DOI: 10.1080/03601234.2024.2418719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Quinolone antibiotics are widely utilized in aquaculture, but little is known about the health effects of their residues. This study used UPLC-MS/MS to analyze the distribution of 11 quinolone antibiotics in cultured fish sold in a coastal city in southeast China - Fujian Province and to assess their health risks. The study found 35.77% of 260 cultured fish samples detected quinolones, with three exceeding the MRL and one containing the banned drug ofloxacin. Of the 11 quinolones tested, three were found in cultured fish, with enrofloxacin at up to 246.0 μg kg-1, followed by ciprofloxacin and ofloxacin. The distribution of antibiotic detection rates showed no significant differences across regions or time periods; however, notable variations were observed among different fish species. The dietary exposure assessment revealed that consuming cultured fish does not pose a health risk to residents. Nevertheless, there are still instances that exceed regulatory limits. Therefore, routine monitoring and risk assessment are essential for enhancing regulatory measures and protecting public health.
Collapse
Affiliation(s)
- Rong Bao
- The School of Public Health, Fujian Medical University, University New District, Fuzhou City, Fujian Province, China
| | - Yan Yang
- The School of Public Health, Fujian Medical University, University New District, Fuzhou City, Fujian Province, China
- Department of Physical and Chemical Analysis, Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Hongjing Chen
- Department of Physical and Chemical Analysis, Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Yuxiang Li
- Department of Physical and Chemical Analysis, Fujian Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, China
| |
Collapse
|
3
|
Shi T, Zhang Q, Chen X, Mao G, Feng W, Yang L, Zhao T, Wu X, Chen Y. Overview of deltamethrin residues and toxic effects in the global environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:271. [PMID: 38954040 DOI: 10.1007/s10653-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Pyrethroids are synthetic organic insecticides. Deltamethrin, as one of the pyrethroids, has high insecticidal activity against pests and parasites and is less toxic to mammals, and is widely used in cities and urban areas worldwide. After entering the natural environment, deltamethrin circulates between solid, liquid and gas phases and enters organisms through the food chain, posing significant health risks. Increasing evidence has shown that deltamethrin has varying degrees of toxicity to a variety of organisms. This review summarized worldwide studies of deltamethrin residues in different media and found that deltamethrin is widely detected in a range of environments (including soil, water, sediment, and air) and organisms. In addition, the metabolism of deltamethrin, including metabolites and enzymes, was discussed. This review shed the mechanism of toxicity of deltamethrin and its metabolites, including neurotoxicity, immunotoxicity, endocrine disruption toxicity, reproductive toxicity, hepatorenal toxicity. This review is aim to provide reference for the ecological security and human health risk assessment of deltamethrin.
Collapse
Affiliation(s)
- Tianli Shi
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Qinwen Zhang
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyu Chen
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
- Institute of Environmental Health and Ecological Safety, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Zhang Y, Shi T, Bao Y, Tan Y, Luo Y, Hong H. Exploring Release, Isomerization, and Absorption of Cypermethrin in Pacific Oysters ( Crassostrea gigas) with Different Processing Methods during In Vivo Digestion: Insights from a Gastrointestinal Tract Quantitative Tracing Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14364-14374. [PMID: 38867641 DOI: 10.1021/acs.jafc.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Cypermethrin (CP) is a neurotoxic insecticide found accumulated in oysters, one of the most commonly consumed seafoods, posing potential health risks to the human body. We designed a gastrointestinal tracing method allowing for accurate quantification of the propulsion of chyme and further established the mouse in vivo digestion model to explore the behavior of CP in the digestion of raw, steamed, and roasted oysters. The results showed that bioaccumulation of CP in oysters may be accompanied by the biotransformation of CP. Thermal processing decreased both the CP content in oysters and its bioaccessibility. The small intestine is the main site for CP digestion and absorption. The cis-isomers of CP might finally accumulate in the body at a higher ratio and further become the predominant configuration for toxic effects. Taken together, the study contributes to the risk assessment of the dietary exposure of CP from aquatic products.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tian Shi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Wu M, Miao J, Zhang W, Wang Q, Sun C, Wang L, Pan L. Occurrence, distribution, and health risk assessment of pyrethroid and neonicotinoid insecticides in aquatic products of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170880. [PMID: 38364586 DOI: 10.1016/j.scitotenv.2024.170880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Synthetic pyrethroid insecticides (SPIs) and neonicotinoid insecticides (NEOs), now dominant in the insecticide market, are increasingly found in aquatic environments. This study focused on six SPIs and five NEOs in aquatic products from four Chinese provinces (Shandong, Hubei, Shanxi and Zhejiang) and the risk assessment of the safety for the residents was conducted. It revealed significantly higher residues of Σ6SPIs (6.27-117.19 μg/kg) compared to Σ5NEOs (0.30-14.05 μg/kg), with SPIs more prevalent in fish and NEOs in shellfish. Carnivorous fish showed higher pesticide levels. Residues of these two types of pesticides were higher in carnivorous fish than in fish with other feeding habits. In the four regions investigated, the hazard quotient and hazard index of SPIs and NEOs were all <1, indicating no immediate health risk to human from single and compound contamination of the two types of pesticides in aquatic products. The present study provides valuable information for aquaculture management, pollution control and safeguarding human health.
Collapse
Affiliation(s)
- Manni Wu
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingjing Miao
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China.
| | | | - Qiaoqiao Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Ce Sun
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Lu Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
6
|
Zhang M, Chen Y, Lai J, Wang X, Hu K, Li J, Li Q, He L, Chen S, Liu A, Ao X, Yang Y, Liu S. Cypermethrin adsorption by Lactiplantibacillus plantarum and its behavior in a simulated fecal fermentation model. Appl Microbiol Biotechnol 2023; 107:6985-6998. [PMID: 37702791 DOI: 10.1007/s00253-023-12764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
The presence of cypermethrin in the environment and food poses a significant threat to human health. Lactic acid bacteria have shown promise as effective absorbents for xenobiotics and well behaved in wide range of applications. This study aimed to characterize the biosorption behavior of cypermethrin by Lactiplantibacillus plantarum RS60, focusing on cellular components, functional groups, kinetics, and isotherms. Results indicated that RS60 exopolysaccharides played a crucial role removing cypermethrin, with the cell wall and protoplast contributing 71.50% and 30.29% to the overall removal, respectively. Notably, peptidoglycans exhibited a high affinity for cypermethrin binding. The presence of various cellular surface groups including -OH, -NH, -CH3, -CH2, -CH, -P = O, and -CO was responsible for the efficient removal of pollutants. Additionally, the biosorption process demonstrated a good fit with pseudo-second-order and Langmuir-Freundlich isotherm. The biosorption of cypermethrin by L. plantarum RS60 involved complex chemical and physical interactions, as well as intraparticle diffusion and film diffusion. RS60 also effectively reduced cypermethrin residues in a fecal fermentation model, highlighting its potential in mitigating cypermethrin exposure in humans and animals. These findings provided valuable insights into the mechanisms underlying cypermethrin biosorption by lactic acid bacteria and supported the advancement of their application in environmental and health-related contexts. KEY POINTS: • Cypermethrin adsorption by L. plantarum was clarified. • Cell wall and protoplast showed cypermethrin binding ability. • L. plantarum can reduce cypermethrin in a fecal fermentation model.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jinghui Lai
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
7
|
Ramesh M, Bindu CF, Mohanthi S, Hema T, Poopal RK, Ren Z, Bin L. Efficiency of hematological, enzymological and oxidative stress biomarkers of Cyprinus carpio to an emerging organic compound (alphamethrin) toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104186. [PMID: 37331673 DOI: 10.1016/j.etap.2023.104186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Alphamethrin is one of the extensively used pyrethroids. Its non-specific mode-of-action might affect the non-target-organisms. Its toxicity data on aquatic organisms are lacking. We determined the toxicity (35 days) of alphamethrin (0.6µg/L and 1.2µg/L) on non-target-organisms by evaluating the efficiency of hematological, enzymological and antioxidants biomarkers of Cyprinus carpio. Compared with the control group, the efficiency of the biomarkers studied was significantly (p<0.05) impaired in the alphamethrin groups. Alphamethrin-toxicity altered hematology, transaminases and the potency of LDH of fish. ACP and ALP activity and biomarkers of oxidative stress in the gills, liver and muscle tissues were affected. IBRv2 index reveals that the biomarkers were inhibited. The observed impairments were the toxicity effects of alphamethrin with respect to concentration and time. The effectiveness of biomarkers for alphamethrin toxicity was like the toxicity data available on other banned insecticides. Alphamethrin could cause multiorgan toxicity on aquatic organisms at µg/L level.
Collapse
Affiliation(s)
- Mathan Ramesh
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Clara F Bindu
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore - 641 046, TamilNadu, India.
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Li Bin
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| |
Collapse
|
8
|
Armenova N, Tsigoriyna L, Arsov A, Petrov K, Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023; 12:foods12061163. [PMID: 36981090 PMCID: PMC10048192 DOI: 10.3390/foods12061163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|