1
|
Zheng GJ, Fang ZE, Zhou BY, Zuo L, Chen X, Liu ML, Yu L, Jing CX, Hao G. DNA methylation in the association between pesticide exposures and type 2 diabetes. World J Diabetes 2025; 16:99200. [PMID: 39959275 PMCID: PMC11718482 DOI: 10.4239/wjd.v16.i2.99200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Numerous epidemiological studies have found that pesticide exposure is associated with the incidence of type 2 diabetes (T2D); however, the underlying mechanisms remain unknown. DNA methylation may play a role in this process. AIM To identify the genes associated with pesticide exposure and T2D by reviewing the current literature. METHODS We systematically searched PubMed and Embase for relevant studies that examined the association between pesticide exposure and DNA methylation, and studies on DNA methylation and T2D through January 15, 2024. RESULTS We identified six genes (Alu, CABLES1, CDH1, PDX1, PTEN, PTPRN2) related to pesticide exposure and T2D. We also suggested future research directions to better define the role of DNA methylation in the association between pesticide exposure and T2D. CONCLUSION DNA methylation of specific genes may play a vital role in the association between pesticide exposure and T2D.
Collapse
Affiliation(s)
- Guang-Jun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zheng-Er Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Bi-Ying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Zuo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ming-Liang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Lei Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chun-Xia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Guang Hao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
2
|
Shi D, Ma Y, Zhu J, Zhang L, Cai M. Occurrence, sources and transport of triazine herbicides in the Antarctic marginal seas. MARINE POLLUTION BULLETIN 2024; 207:116820. [PMID: 39126778 DOI: 10.1016/j.marpolbul.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The extensively applied triazine herbicides are easily transported by ocean currents over long distances. This study analyzed ten triazine herbicides in the Antarctic marginal seas and the Southern Indian Ocean during the austral summer for the first time, addressing their largely unexplored behavior in remote marine environments. The total triazine herbicides showed great spatial heterogeneity, with a range of 20-790 pg/L and an average of 31 ± 66 pg/L. The waterborne transport of triazine herbicides in the Antarctic was affected by hydrological processes, especially the blocking and accumulation effect of the polar front. Variations in sea ice extent and temperature were also important influencing factors, resulting in elevated triazine herbicides in surface seawater of East Antarctica, but reduced levels in West Antarctica. Furthermore, the source apportionment results indicated that approximately 55 % of the herbicides originated from sugarcane cultivation, 28 % from algaecide use, and 16 % from corn and sorghum farming.
Collapse
Affiliation(s)
- Dandan Shi
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| | - Jincai Zhu
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Lihong Zhang
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| |
Collapse
|
3
|
Zhang X, Li L, Xie Z, Ma J, Li YF, Cai M, Ren NQ, Kallenborn R, Zhang ZF, Zhang X, C.G. Muir D. Exploring global oceanic persistence and ecological effects of legacy persistent organic pollutants across five decades. SCIENCE ADVANCES 2024; 10:eado5534. [PMID: 39321284 PMCID: PMC11423884 DOI: 10.1126/sciadv.ado5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Global monitoring of persistent organic pollutants (POPs) has intensified following regulatory efforts aimed at reducing their release. In this context, we compiled over 10,000 POP measurements, reported from 1980 to 2023, to assess the effectiveness of these legislative measures in the global marine environments. While a general decreasing trend in legacy POP concentrations is evident across various maritime regions, highlighting the success of source control measures, the Arctic Ocean and its marginal seas have experienced a rise in POP levels. This increase suggests the northward migration of pollutants via ocean currents from mid-latitude regions to polar areas. Despite global efforts to reduce emissions, the continued transport and accumulation of pollutants to the Arctic regions may have substantial ecological impacts. Addressing these environmental challenges demands a thorough understanding of POP dynamics, including response times, multiphase transport, and biogeochemical cycling. Continued research into these processes is vital to accurately map their distribution and temporal variations within marine systems.
Collapse
Affiliation(s)
- Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno NV 89557, USA
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Minghong Cai
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai 200136, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nan-Qi Ren
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
- University of the Arctic, Rovaniemi, Finland
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Department of Geography, Planning & Environment, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Derek C.G. Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S1A1, Canada
| |
Collapse
|
4
|
Asefa EM, Mergia MT, Damtew YT, Mengistu DA, Dugusa FF, Tessema RA, Enoe J, Ober J, Teklu BM, Woldemariam ED. Organochlorine pesticides in Ethiopian waters: Implications for environmental and human health. Toxicol Rep 2024; 12:622-630. [PMID: 38974025 PMCID: PMC11225013 DOI: 10.1016/j.toxrep.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Despite the global ban on organochlorine pesticides (OCPs) since the 1970s, their use continues in many developing countries, including Ethiopia, primarily due to the lack of viable alternatives and weak regulations. Nonetheless, the extent of contamination and the resulting environmental and health consequences in these countries remain inadequately understood. To address these knowledge gaps, we conducted a comprehensive analysis of reported concentrations (n=398) of OCPs (n=30) in distinct yet interconnected water matrices: water, sediment, and biota in Ethiopia. Our analysis revealed a notable geographical bias, with higher concentrations found in sediments (0.074-1161.2 µg/kg), followed by biota (0.024-1003 µg/kg) and water (0.001-1.85 µg/L). Moreover, DDTs, endosulfan, and hexachlorohexenes (HCHs) were among the most frequently detected OCPs in higher concentrations in Ethiopian waters. The DDT metabolite p,p'-DDE was commonly observed across all three matrices, with concentrations in water birds reaching levels up to 57 and 143,286 times higher than those found in sediment and water, respectively. The findings showed a substantial potential for DDTs and endosulfan to accumulate and biomagnify in Ethiopian waters. Furthermore, it was revealed that the consumption of fish contaminated with DDTs posed both non-carcinogenic and carcinogenic risks while drinking water did not pose significant risks in this regard. Importantly, the issue of OCPs in Ethiopia assumes even greater significance as their concentrations were found to be eight times higher than those of currently used pesticides (CUPs) in Ethiopian waters. Consequently, given the ongoing concerns about OCPs in Ethiopia, there is a need for ongoing monitoring, implementation of sustainable mitigation measures, and strengthening of OCP management systems in the country, as well as in other developing countries with similar settings and practices.
Collapse
Affiliation(s)
- Elsai Mati Asefa
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Harar 235, Ethiopia
| | - Mekuria Teshome Mergia
- Department of Biology, College of Computational and Natural Science, Hawassa University, Hawassa 05, Ethiopia
| | - Yohannes Tefera Damtew
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Harar 235, Ethiopia
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dechasa Adare Mengistu
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Harar 235, Ethiopia
| | - Faye Fekede Dugusa
- School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar 235, Ethiopia
| | - Roba Argaw Tessema
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, Harar 235, Ethiopia
| | - Jerry Enoe
- Department of Geomatics Engineering and Land Management, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Józef Ober
- Department of Applied Social Sciences, Faculty of Organization and Management, Silesian University of Technology, Roosevelta 26-28, Zabrze 41-800, Poland
| | - Berhan M. Teklu
- Plant Quarantine and Regulatory Lead Executive, Ethiopian Agricultural Authority, Addis Ababa 313003, Ethiopia
| | - Ermias Deribe Woldemariam
- Department of Environmental Management, Faculty of Urban Development Studies, Kotebe University of Education, Addis Ababa 31248, Ethiopia
| |
Collapse
|
5
|
MacKeown H, Scapuzzi C, Baglietto M, Benedetti B, Di Carro M, Magi E. Wastewater and seawater monitoring in Antarctica: Passive sampling as a powerful strategy to evaluate emerging pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171755. [PMID: 38494027 DOI: 10.1016/j.scitotenv.2024.171755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The Ross Sea, among the least human-impacted marine environments worldwide, recently became the first marine protected area in Antarctica. To assess the impact of the Italian research station Mario Zucchelli (MZS) on the surrounding waters, passive sampling - as well as spot sampling for comparison - took place in the effluent of the wastewater treatment plant (WWTP) and the receiving surface marine waters. Polar Organic Chemical Integrative Samplers (POCIS) were deployed for six consecutive 2-week periods from November to February in a reservoir collecting the wastewater effluent. Passive samplers were also deployed at shallow depth offshore from the wastewater effluent outlet from MZS for two separate 3-week periods (November 2021 and January 2022). Grab water samples were collected alongside each POCIS deployment, for comparison with passive sampling results. POCIS, used for the first time in Antarctica, demonstrated to be advantageous to estimate time-averaged concentrations in waters and the results were comparable to those obtained by repeated spot samplings. Among the 23 studied ECs - including drugs, UV-filters, perfluorinated substances, caffeine - 15 were detected in both grab and passive sampling in the WWTP effluent and followed similar concentration profiles in both types of sampling. High concentrations of caffeine, naproxen and ketoprofen in the dozens of μg L-1 were detected. Other compounds, including drugs and several UV filters, were detected down to sub- μg L-1 concentrations. In marine waters close to the effluent output, only traces of a drug (4.8 ng L-1) and two UV filters (up to 0.04 μg L-1) were quantified.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Matteo Baglietto
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| |
Collapse
|
6
|
Ning K, Liu A, Zheng M, Li Y, Hu S, Wang L. Distribution characteristics and migration trends of hexabromocyclododecanes between seawater-sediment system in different seasons of fishing grounds along the Yellow sea and East China sea coasts. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106314. [PMID: 38185000 DOI: 10.1016/j.marenvres.2023.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Pollutants in the ecological environment of fishery seawater are harmful to the survival and reproduction of aquatic organisms. Hexabromocyclododecanes (HBCDs) were 42.9% detected within ND-48.89 ng/L in 177 seawater samples and 30.7% within ND-1.07 ng/g dw in 88 sediment samples of the fisheries in the Yellow Sea and East China Sea, respectively. γ-HBCD accounted for 65% of seawater and 89% of sediment samples. HBCDs in seawater in winter (ND-48.89 ng/L) were significantly higher than in summer (ND-4.99 ng/L), possibly because the re-suspension caused by winds and waves could re-migrate HBCDs from the sediment to the seawater in winter. However, seasonal differences of HBCDs in sediment were not significant. The fugacities indicated HBCDs' migrating trend from seawater to sediment due to their hydrophobic nature. There is almost no terrestrial input of HBCDs from the Yangtze and Yellow Rivers, and currently used fishery materials in marine may compose long-lasting sources of HBCDs.
Collapse
Affiliation(s)
- Ke Ning
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Yiling Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Shanmin Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ling Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Galbán-Malagón C, Gómez-Aburto VA, Hirmas-Olivares A, Luarte T, Berrojalbiz N, Dachs J. Dichlorodiphenyltrichloroethane (DDT) and Dichlorodiphenyldichloroethylene (DDE) levels in air and surface sea waters along the Antarctic Peninsula. MARINE POLLUTION BULLETIN 2023; 197:115699. [PMID: 37924734 DOI: 10.1016/j.marpolbul.2023.115699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Persistent organic pollutants (POPs) are widespread worldwide, even reaching polar regions. Among POPs, dichlorodiphenyltrichloroethane (DDT) and their metabolites have been reported scarcely in the Antarctic environment. Here we report the levels of p,p'-DDT, o,p'-DDT, p,p'-DDE, and o,p'-DDE in air and water samples collected during austral summer 2009. The levels found ranged from 0.25 to 4.26 pg m-3 in the atmospheric samples while in the water samples ranged from 0.07 to 0.25 pg L-1. These concentrations were within the range of the reported concentrations in the last 20 years in Antarctica. However, the source ratio showed that most of p,p'-DDT comes from fresh applications and Dicofol formulations. The back-trajectories estimated for the air masses revealed that most of the p,p'-DDT came from the continental Antarctic peninsula and surrounding waters. The diffusive exchange direction showed that Antarctic surface waters are the final sink of the studied compounds during the survey period.
Collapse
Affiliation(s)
- Cristóbal Galbán-Malagón
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute for Environment, Florida International University, Miami, FL, USA.
| | | | - Andrea Hirmas-Olivares
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Thais Luarte
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; PhD Program in Conservation Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Naiara Berrojalbiz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
8
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|