1
|
Kelly H, Inada M, Itoh Y. The Diverse Pathways for Cell Surface MT1-MMP Localization in Migratory Cells. Cells 2025; 14:209. [PMID: 39937000 PMCID: PMC11816416 DOI: 10.3390/cells14030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process. It has been extensively shown that MT1-MMP promotes the migration of different cell types in tissue, including fibroblasts, epithelial cells, endothelial cells, macrophages, mesenchymal stem cells, and cancer cells. MT1-MMP is tightly regulated at different levels, and its localization to leading-edge membrane structures is an essential process for MT1-MMP to promote cellular invasion. Different cells display different motility-associated membrane structures, which contribute to their invasive ability, and there are diverse mechanisms of MT1-MMP localization to these structures. In this article, we will discuss the current understanding of MT1-MMP regulation, in particular, localization mechanisms to these different motility-associated membrane structures.
Collapse
Affiliation(s)
- Hannah Kelly
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
2
|
Song M, Cui Y, Wang Q, Zhang X, Zhang J, Liu M, Li Y. Ginsenoside Rg3 Alleviates Aluminum Chloride-Induced Bone Impairment in Rats by Activating the TGF-β1/Smad Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12634-12644. [PMID: 34694773 DOI: 10.1021/acs.jafc.1c04695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aluminum (Al)-induced bone formation and metabolism disorder through inhibition of the TGF-β1/Smad signaling pathway is one of the important mechanisms of bone impairment. Ginsenoside Rg3 (Rg3), a specific biological effector molecule, can provide protection to bones. Previously, we demonstrated that Rg3 can reverse aluminum chloride (AlCl3)-induced oxidative stress and metabolic disorder of bones; however, whether the TGF-β1/Smad signaling pathway is involved in it remains unclear. First, we found that Rg3 attenuated Al-induced bone impairment in vivo and in vitro by relieving structural damage to the femur, increasing MC3T3-E1 cell activity, differentiation, mineralization, inhibition of cell apoptosis, and upregulating the extracellular matrix (ECM) synthesis and the expression of TGF-β1/Smad signaling pathway key factors. Subsequently, in the signal pathway intervention experiment, the protective effect of Rg3 on bone impairment induced by Al was weakened; these results indicate that activating the TGF-β1/Smad signaling pathway is one of the mechanisms of Rg3-attenuated Al-induced bone impairment.
Collapse
Affiliation(s)
- Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| |
Collapse
|
3
|
Li M, Wang Y, Li M, Wu X, Setrerrahmane S, Xu H. Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B 2021; 11:2726-2737. [PMID: 34589393 PMCID: PMC8463276 DOI: 10.1016/j.apsb.2021.01.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Integrins are transmembrane receptors that have been implicated in the biology of various human physiological and pathological processes. These molecules facilitate cell–extracellular matrix and cell–cell interactions, and they have been implicated in fibrosis, inflammation, thrombosis, and tumor metastasis. The role of integrins in tumor progression makes them promising targets for cancer treatment, and certain integrin antagonists, such as antibodies and synthetic peptides, have been effectively utilized in the clinic for cancer therapy. Here, we discuss the evidence and knowledge on the contribution of integrins to cancer biology. Furthermore, we summarize the clinical attempts targeting this family in anti-cancer therapy development.
Collapse
Key Words
- ADAMs, adisintegrin and metalloproteases
- AJ, adherens junctions
- Antagonists
- CAFs, cancer-associated fibroblasts
- CAR, chimeric antigen receptor
- CRC, colorectal cancer
- CSC, cancer stem cell
- Clinical trial
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial–mesenchymal transition
- ERK, extracellular regulated kinase
- Extracellular matrix
- FAK, focal adhesion kinase
- FDA, U.S. Food and Drug Administration
- HIF-1α, hypoxia-inducible factor-1α
- HUVECs, human umbilical vein endothelial cells
- ICAMs, intercellular adhesion molecules
- IGFR, insulin-like growth factor receptor
- IMD, integrin-mediated death
- Integrins
- JNK, c-Jun N-terminal kinase 16
- MAPK, mitogen-activated protein kinase
- MMP2, matrix metalloprotease 2
- NF-κB, nuclear factor-κB
- NSCLC, non-small cell lung cancer
- PDGFR, platelet-derived growth factor receptor
- PI3K, phosphatidylinositol 3-kinase
- RGD, Arg-Gly-Asp
- RTKs, receptor tyrosine kinases
- SAPKs, stress-activated MAP kinases
- SDF-1, stromal cell-derived factor-1
- SH2, Src homology 2
- STAT3, signal transducer and activator of transcription 3
- TCGA, The Cancer Genome Atlas
- TICs, tumor initiating cells
- TNF, tumor necrosis factor
- Targeted drug
- Tumor progression
- VCAMs, vascular cell adhesion molecules
- VEGFR, vascular endothelial growth factor receptor
- mAb, monoclonal antibodies
- sdCAR-T, switchable dual-receptor CAR-engineered T
- siRNA, small interference RNA
- uPA, urokinase-type plasminogen activator
Collapse
|
4
|
Maldonado H, Hagood JS. Cooperative signaling between integrins and growth factor receptors in fibrosis. J Mol Med (Berl) 2021; 99:213-224. [DOI: 10.1007/s00109-020-02026-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
|
5
|
Lino RLB, Dos Santos PK, Pisani GFD, Altei WF, Cominetti MR, Selistre-de-Araújo HS. Alphavbeta3 integrin blocking inhibits apoptosis and induces autophagy in murine breast tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118536. [PMID: 31465809 DOI: 10.1016/j.bbamcr.2019.118536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Integrins are cell receptors that mediate adhesion to the extracellular matrix (ECM) and regulate cell migration, a crucial process in tumor invasion. The αvβ3 integrin recognizes the arginine-glycine-aspartic acid (RGD) motif in ECM proteins and it can be antagonized by RGD-peptides, resulting in decreased cell migration and invasion. RGD-based drugs have shown disappointing results in clinical trials; however, the reasons for their lack of activity are still obscure. Aiming to contribute to a better understanding of the molecular consequences of integrin inhibition, we tested a recombinant RGD-disintegrin (DisBa-01) in two types of murine cell lines, breast tumor 4T1BM2 cells and L929 fibroblasts. Only tumor cells showed decreased motility and adhesion, as well as morphologic alterations upon DisBa-01 treatment (100 and 1000 nM). This result was attributed to the higher levels of αvβ3 integrin in 4T1BM2 cells compared to L929 fibroblasts making the former more sensitive to DisBa-01 blocking. DisBa-01 induced cell cycle arrest at the S phase in 4T1BM2 cells, but it did not induce apoptosis, which was consistent with the decrease in caspase-3, 8 and 9 expression at mRNA and protein levels. DisBa-01 increases PI3K, Beclin-1 and LC3B expression in tumor cells, indicators of autophagic induction. In conclusion, αvβ3 integrin blocking by DisBa-01 results in inhibition of adhesion and migration and in the activation of an autophagy program, allowing prolonged survival and avoiding immediate apoptotic death. These observations suggest new insights into the effects of RGD-based inhibitors considering their importance in drug development for human health.
Collapse
Affiliation(s)
- Rafael Luis Bressani Lino
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Graziéle Fernanda Deriggi Pisani
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Wanessa Fernanda Altei
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Marcia Regina Cominetti
- Department of Gerontology, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil
| | - Heloisa Sobreiro Selistre-de-Araújo
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, Km 235-SP-310, São Carlos CEP 13.565-905, São Paulo, Brazil.
| |
Collapse
|
6
|
Shaverdashvili K, Zhang K, Osman I, Honda K, Jobava R, Bedogni B. MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility. Oncotarget 2016; 6:33512-22. [PMID: 26392417 PMCID: PMC4741782 DOI: 10.18632/oncotarget.5258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/31/2015] [Indexed: 11/26/2022] Open
Abstract
Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classically, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility.
Collapse
Affiliation(s)
- Khvaramze Shaverdashvili
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Keman Zhang
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Iman Osman
- From the Departments of Dermatology, Urology and Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Kord Honda
- From the Department of Pathology and Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rauli Jobava
- From the Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Barbara Bedogni
- From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
7
|
Kufaishi H, Alarab M, Drutz H, Lye S, Shynlova O. Comparative Characterization of Vaginal Cells Derived From Premenopausal Women With and Without Severe Pelvic Organ Prolapse. Reprod Sci 2016; 23:931-43. [PMID: 26763525 DOI: 10.1177/1933719115625840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study tested a hypothesis that primary human vaginal cells derived from tissue of premenopausal women with severe pelvic organ prolapse (POP-HVCs) would display differential functional characteristics as compared to vaginal cells derived from asymptomatic women with normal pelvic floor support (control-HVCs). METHODS Vaginal tissue biopsies were collected from premenopausal patients with POP (n = 8) and asymptomatic controls (n = 7) during vaginal hysterectomy or repair. Primary vaginal cells were isolated by enzymatic digestion and characterized by immunocytochemistry. Cell attachment and proliferation on different matrices (collagen I, collagen II, collagen IV, fibronectin, laminin, tenascin, and vitronectin) were compared between POP-HVCs and control-HVCs. RNA was extracted, and the expression of 84 genes was screened using Human Extracellular Matrix and Adhesion Molecules RT(2) Profiler PCR array. The expression of selected genes was verified by quantitative reverse transcription-polymerase chain reaction. RESULTS (1) Control-HVCs attached to collagen IV more efficiently than POP-HVCs; (2) control-HVCs and POP-HVCs show a similar proliferation rate when plated on proNectin and collagen I; (3) when seeded on collagen I, resting POP-HVCs expressed significantly (P < .05) increased transcript levels of collagen VII, multiple matrix metalloproteinases (MMP3, MMP7, MMP10, MMP12, MMP13, and MMP14), integrins (ITGA1, ITGA4, ITGA6, ITGA8, ITGB1, ITGB2, and ITGB3), and cell adhesion molecules as compared to control-HVCs. Collagen XV and tissue inhibitors of MMPs (TIMP1 and TIMP2) as well as genes involved in the biogenesis and maturation of collagen and elastin fibers (LOX, LOXL1-LOXL3, BMP1, and ADAMTS2) were significantly downregulated in POP-HVCs versus control-HVCs (P < .05). CONCLUSIONS Resting primary POP-HVCs in vitro show altered cellular characteristics as compared to control-HVCs, which may influence their dynamic responses to external mechanical or hormonal stimuli.
Collapse
Affiliation(s)
- Hala Kufaishi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - May Alarab
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Harold Drutz
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Oksana Shynlova
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Oliveira CRD, Marqueti RDC, Cominetti MR, Douat ESV, Ribeiro JU, Pontes CLS, Borghi-Silva A, Selistre-de-Araujo HS. Effects of blocking αvβ3 integrin by a recombinant RGD disintegrin on remodeling of wound healing after induction of incisional hernia in rats. Acta Cir Bras 2015; 30:134-42. [DOI: 10.1590/s0102-86502015002000008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 02/22/2023] Open
|
9
|
Oliveira CRD, Marqueti RDC, Cominetti MR, Vieira ESA, Ribeiro JU, Pontes CLS, Borghi-Silva A, Selistre-de-Araujo HS. Effects of Blocking αvβ₃ integrin by a recombinant RGD disintegrin on remodeling of wound healing after induction of incisional hernia in rats. Acta Cir Bras 2014; 29 Suppl 3:6-13. [PMID: 25351149 DOI: 10.1590/s0102-86502014001700002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Incisional hernia (IH) is characterized by defective wound healing process. Disba-01, a αvb₃ integrin blocker has shown to control the rate of wound repair and therefore it could be a target for new wound healing therapies.The objective of the study was to determine the changes induced by Disba-01 on repair of wound healing after induced IH in rats. METHODS Thirty two male albino rats were submitted to IH and divided into 4 experimental groups: G1, placebo control; G2, DisBa-01-treated; G3, anti-αvβ₃ antibodies-treated and G4, anti-α₂ antibodies-treated. Histological. biochemical and extracellular matrix remodeling analysis of abdominal wall were evaluated. RESULTS After 14 days, 100% of the G2 did not present hernia, and the hernia ring was closed by a thin membrane. In contrast, all groups maintained incisional hernia. DisBa-01 also increased the number macrophages and fibroblasts and induced the formation of new vessels. Additionally, MMP-2 was strongly activated only in G2 (P<0.05). Anti- αvβ₃-integrin antibodies produced similar results than Disba-01 but not anti-α₂ integrin blocking antibodies. CONCLUSION These results strongly indicate that Disba-01 has an important role in the control of wound healing and the blocking of this integrin may be an interesting therapeutical strategy in IH.
Collapse
Affiliation(s)
| | | | | | | | - Juliana Uema Ribeiro
- Department of Physioterapy, São Carlos Federal University, São Carlos, SP, Brazil
| | | | - Audrey Borghi-Silva
- Department of Medicine, São Carlos Federal University, São Carlos, SP, Brazil
| | | |
Collapse
|
10
|
Ji S, Xu J, Zhang B, Yao W, Xu W, Wu W, Xu Y, Wang H, Ni Q, Hou H, Yu X. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy. Cancer Biol Ther 2014; 13:206-15. [DOI: 10.4161/cbt.13.4.18692] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
EMARA MARWAN, ALLALUNIS-TURNER JOAN. Effect of hypoxia on angiogenesis related factors in glioblastoma cells. Oncol Rep 2014; 31:1947-53. [DOI: 10.3892/or.2014.3037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
|
12
|
Albrechtsen R, Kveiborg M, Stautz D, Vikeså J, Noer JB, Kotzsh A, Nielsen FC, Wewer U, Fröhlich C. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis, and increased tumor growth. J Cell Sci 2013; 126:4707-20. [DOI: 10.1242/jcs.129510] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Matrix metalloproteases (MMPs), in particular MMP-2, -9, and -14, play a key role in various aspects of cancer pathology. Likewise, ADAMs (A Disintegrin And Metalloproteases), including ADAM12, are upregulated in malignant tumors and contribute to the pathology of cancers. Here we showed a positive correlation between MMP-14 and ADAM12 expression in human breast cancer. We demonstrated that in 293-VnR and human breast cancer cells expressing ADAM12 at the cell surface, endogenous MMP-14 was recruited to the cell surface, resulting in its activation. Subsequent to this activation, gelatin degradation was stimulated and tumor-cell apoptosis was decreased, with reduced expression of the pro-apoptotic proteins BCL2L11 and BIK. The effect on gelatin degradation was abrogated by inhibition of the MMP-14 activity and appeared to be dependent on cell-surface αVβ3 integrin localization, but neither the catalytic activity of ADAM12 nor the cytoplasmic tail of ADAM12 were required. The significance of ADAM12-induced activation of MMP-14 was underscored by a reduction in MMP-14–mediated gelatin degradation and abolition of apoptosis-protective effects by specific monoclonal antibodies against ADAM12. Furthermore, orthotopic implantation of ADAM12-expressing MCF7 cells in nude mice produced tumors with increased levels of activated MMP-14 and confirmed that ADAM12 protects tumor cells against apoptosis, leading to increased tumor progression. In conclusion, our data suggest that a ternary protein complex composed of ADAM12, αVβ3 integrin, and MMP-14 at the tumor cell surface regulates MMP-14 functions. This interaction may point to a novel concept for the development of MMP-14–targeting drugs in treating cancer.
Collapse
|
13
|
Fang IJ, Slowing II, Wu KCW, Lin VSY, Trewyn BG. Ligand Conformation Dictates Membrane and Endosomal Trafficking of Arginine-Glycine-Aspartate (RGD)-Functionalized Mesoporous Silica Nanoparticles. Chemistry 2012; 18:7787-92. [DOI: 10.1002/chem.201200023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 01/07/2023]
|
14
|
Jordan MC, Zeplin PH. Local inhibition of angiogenesis by halofuginone coated silicone materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1203-1210. [PMID: 22421950 DOI: 10.1007/s10856-012-4599-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Anti-angiogenic therapy is a promising approach for the treatment of increased angiogenesis in certain diseases. We aimed to investigate the local anti-angiogenic effect of silicone implants coated with Halofuginone, an angiogenesis inhibitor that inhibits synthesis of collagen-type-I and matrix metalloproteinases. The degree of angiogenesis was observed after implantation of surface modified Halofuginone eluting silicone implants into a submuscular pocket in rats over a period of 3 months. Subsequently, key mediators of angiogenesis (TGF-beta-1, bFGF, COL1A1, MMP-2, MMP-9, VEGF and PDGF) were established by immunohistological staining and RT-PCR and statistically evaluated. In comparison to uncoated silicone implants, Halofuginone eluting silicone implants lead to a significant local decrease of angiogenesis. Halofuginone eluting hybrid surface silicone implants have a significant local anti-angiogenic effect by down-regulating the expression activity of key mediators of angiogenesis.
Collapse
Affiliation(s)
- Martin C Jordan
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany.
| | | |
Collapse
|
15
|
Sundararaghavan HG, Masand SN, Shreiber DI. Microfluidic generation of haptotactic gradients through 3D collagen gels for enhanced neurite growth. J Neurotrauma 2011; 28:2377-87. [PMID: 21473683 DOI: 10.1089/neu.2010.1606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We adapted a microfluidic system used previously to generate durotactic gradients of stiffness in a 3D collagen gel, to produce haptotactic gradients of adhesive ligands through the collagen gel. Oligopeptide sequences that included bioactive peptide sequences from laminin, YIGSR, or IKVAV, were grafted separately onto type I collagen using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Solutions of peptide-grafted collagen and untreated collagen were then used as source and sink input solutions, respectively, in an H-shaped microfluidic network fabricated using traditional soft lithography. One-dimensional gradients of the peptide-grafted collagen solution were generated in the channel that connected the source and sink channels, and these gradients became immobilized upon self-assembly of the collagen into a 3D fibrillar gel. The slope and average concentration of the gradients were adjusted by changing the concentration of the source solutions and by changing the length of the cross-channel. A separate, underlying channel in the microfluidic construct allowed the introduction of a chick embryo dorsal root ganglion into the network. Neurites from these explants grew significantly longer up steep gradients of YIGSR, but shallow gradients of IKVAV in comparison to untreated collagen controls. When these two gradients were presented in combination, the bias in growth acceleration was the largest and most consistent. No differences were observed in the number of neurites choosing to grow up or down the gradients in any condition. These results suggest that the incorporation of distinct gradients of multiple bioactive ligands can improve directional acceleration of regenerating axons.
Collapse
Affiliation(s)
- Harini G Sundararaghavan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
16
|
Ulbrich S, Friedrichs J, Valtink M, Murovski S, Franz CM, Müller DJ, Funk RHW, Engelmann K. Retinal pigment epithelium cell alignment on nanostructured collagen matrices. Cells Tissues Organs 2011; 194:443-56. [PMID: 21411961 DOI: 10.1159/000323653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2010] [Indexed: 11/19/2022] Open
Abstract
We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α(2) were examined by immunofluorescence and Western blotting. SV40-RPE cells quickly attached to the nanostructured collagen matrices and aligned along the collagen fibrils. However, they disrupted both native and cross-linked collagen matrices within 5 h. Primary RPE cells aligned more slowly without destroying either native or cross-linked substrates. Compared to primary RPE cells, ARPE-19 cells showed reduced alignment but partially disrupted the matrices within 20 h after seeding. Expression of the collagen type I-binding integrin subunit α(2) was highest in SV40-RPE cells, lower in primary RPE cells and almost undetectable in ARPE-19 cells. Thus, integrin α(2) expression levels directly correlated with the degree of cell alignment in all examined RPE cell types. Specific integrin subunit α(2)-mediated matrix binding was verified by preincubation with an α(2)-function-blocking antibody, which impaired cell adhesion and alignment to varying degrees in primary and SV40-RPE cells. Since native matrices supported extended and directed primary RPE cell growth, optimizing the matrix production procedure may in the future yield nanostructured collagen matrices serving as transferable cell sheet carriers.
Collapse
Affiliation(s)
- Stefan Ulbrich
- Institute of Anatomy, Biotechnology Center, TU Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Contois L, Akalu A, Brooks PC. Integrins as "functional hubs" in the regulation of pathological angiogenesis. Semin Cancer Biol 2009; 19:318-28. [PMID: 19482089 PMCID: PMC2806796 DOI: 10.1016/j.semcancer.2009.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/20/2009] [Indexed: 02/07/2023]
Abstract
It is well accepted that complex biological processes such as angiogenesis are not controlled by a single family of molecules or individually isolated signaling pathways. In this regard, new insight into the interconnected mechanisms that regulate angiogenesis might be gained by examining this process from a more global network perspective. The coordination of signaling cues from both outside and inside many different cell types is required for the successful completion of angiogenesis. Evidence is accumulating that the multifunctional integrin family of cell adhesion receptors represent an important group of molecules that play active roles in sensing, integrating, and distributing a diverse set of signals that regulate many cellular events required for angiogenesis. Given the ability of integrins to bind numerous extracellular ligands and transmit signals in a bi-directional fashion, we will discuss the multiple ways by which integrins may serve as a functional hub during pathological angiogenesis. In addition, we will highlight potential imaging and therapeutic strategies based on the expanding new insight into integrin function.
Collapse
Affiliation(s)
- Liangru Contois
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough Maine 04074
| | - Abebe Akalu
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough Maine 04074
| | - Peter C. Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough Maine 04074
| |
Collapse
|
18
|
Elenjord R, Allen JB, Johansen HT, Kildalsen H, Svineng G, Maelandsmo GM, Loennechen T, Winberg JO. Collagen I regulates matrix metalloproteinase-2 activation in osteosarcoma cells independent of S100A4. FEBS J 2009; 276:5275-86. [PMID: 19682073 DOI: 10.1111/j.1742-4658.2009.07223.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work investigates the effect of cell-collagen I interactions on the synthesis and activation of MMP-2, as well as synthesis of MT1-MMP and TIMP-1, by using an in vitro model with 3D fibrillar and 2D monomeric collagen. In order to reveal whether the metastasis-associated protein S100A4 can influence the cell's response to the two forms of collagen, osteosarcoma cell lines with high and low endogenous levels of S100A4 were used. Attachment of osteosarcoma cells to 3D fibrillar and 2D monomeric collagen resulted in opposite effects on MMP-2 activation. Attachment to 3D fibrillar collagen decreased activation of proMMP-2, with a corresponding reduction in MT1-MMP. By contrast, attachment to monomeric collagen increased the amount of fully active MMP-2. This was caused by a reduction in TIMP-1 levels when cells were attached to monomeric 2D collagen. The effect of collagen on proMMP-2 activation was independent of endogenous S100A4 levels, whereas synthesis of TIMP-1 was dependent on S100A4. When cells were attached to monomeric collagen, cells with a high level of S100A4 showed a greater reduction in the synthesis of TIMP-1 than did those with a low level of S100A4. Taken together, this study shows that synthesis and activation of MMP-2 is affected by interactions between osteosarcoma cells and collagen I in both fibrillar and monomeric form.
Collapse
|
19
|
Lafleur MA, Xu D, Hemler ME. Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 2009; 20:2030-40. [PMID: 19211836 DOI: 10.1091/mbc.e08-11-1149] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) supports tumor cell invasion through extracellular matrix barriers containing fibrin, collagen, fibronectin, and other proteins. Here, we show that simultaneous knockdown of two or three members of the tetraspanin family (CD9, CD81, and TSPAN12) markedly decreases MT1-MMP proteolytic functions in cancer cells. Affected functions include fibronectin proteolysis, invasion and growth in three-dimensional fibrin and collagen gels, and MMP-2 activation. Tetraspanin proteins (CD9, CD81, and TSPAN2) selectively coimmunoprecipitate and colocalize with MT1-MMP. Although tetraspanins do not affect the initial biosynthesis of MT1-MMP, they do protect the newly synthesized protein from lysosomal degradation and support its delivery to the cell surface. Interfering with MT1-MMP-tetraspanin collaboration may be a useful therapeutic approach to limit cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Marc A Lafleur
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Manduca P, Castagnino A, Lombardini D, Marchisio S, Soldano S, Ulivi V, Zanotti S, Garbi C, Ferrari N, Palmieri D. Role of MT1-MMP in the osteogenic differentiation. Bone 2009; 44:251-65. [PMID: 19027888 DOI: 10.1016/j.bone.2008.10.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 09/27/2008] [Accepted: 10/16/2008] [Indexed: 11/16/2022]
Abstract
Metalloproteinase MT1-MMP is induced and Pro-MMP-2 up modulated early in rat preosteoblasts (ROB) set to differentiate. We here show that the induction of MMPs, accompanied by activation of Pro-MMP-2, occurs by 6 h of adhesion on endogenous extracellular matrix (ECM), Fibronectin (FN) and Collagen type I (CI). These events do not occur after adhesion on Collagen III (CIII), Vitronectin (VN) or BSA. Within the first hour on inducing substrata or plastic, FAK is unchanged and ERK(1,2), is activated, but this activation is not sufficient for MT1-MMP induction. The function of p38 MAPK and PTKs is not required for the induction by substrata of MMPs. Six hours after plating preosteoblasts on MMP-inducing substrata, complexes of beta1 integrin with MT1-MMP are formed, that contain integrin dimers specifically engaged by the substratum, alpha4 and alpha5 chains for cells plated on FN, and alpha2 chain for cells plated on CI and ECM. Induction of MT1-MMP and its expression during osteogenesis pleiotropically regulate alkaline phosphatase (AP) expression. During differentiation, variant clones derived from preosteoblasts and MMPs-over-expressing osteoblasts show high MT1-MMP level associated with high AP level both persisting in time, while inhibition of MMPs is accompanied by inhibition of AP. Up or down modulation of AP, transcriptionally or by inhibition of the enzyme activity, has no effect on level or timing of expression of MT1-MMP and Pro-MMP-2. The persistence in expression of MT1-MMP during differentiation, and the associated persistence in expression of AP, as well as their inhibition, both impair the formation of nodules and mineral deposition. A transient pattern of expression of MT1-MMP is required for the establishment of nodules, and MT1-MMP decrease is permissive for nodule mineralization. The expression of AP is required for nodule formation and its level modulates the mineralization. MT1-MMP has multiple functions and is implicated in multiple steps of the differentiation process, acting to regulate homeostasis of the osteogenic differentiation.
Collapse
Affiliation(s)
- Paola Manduca
- Genetics, DiBio, University of Genoa, 26, C. Europa, Genoa 16132, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Su G, Blaine SA, Qiao D, Friedl A. Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res 2008; 68:9558-65. [PMID: 19010933 PMCID: PMC2877371 DOI: 10.1158/0008-5472.can-08-1645] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mounting evidence implicates stromal fibroblasts in breast carcinoma progression. We have recently shown in three-dimensional coculture experiments that human mammary fibroblasts stimulate the proliferation of T47D breast carcinoma cells and that this activity requires the shedding of the heparan sulfate proteoglycan syndecan-1 (Sdc1) from the fibroblast surface. The goal of this project was to determine the mechanism of Sdc1 ectodomain shedding. The broad spectrum matrix metalloproteinase (MMP) inhibitor GM6001 specifically blocked Sdc1-mediated carcinoma cell growth stimulation, pointing toward MMPs as critical enzymes involved in Sdc1 shedding. MMP-2 and membrane type 1 MMP (MT1-MMP) were the predominant MMPs expressed by the mammary fibroblasts. Fibroblast-dependent carcinoma cell growth stimulation in three-dimensional coculture was abolished by MT1-MMP expression silencing with small interfering RNA and restored either by adding recombinant MT1-MMP catalytic domain or by expressing a secreted form of Sdc1 in the fibroblasts. These findings are consistent with a model where fibroblast-derived MT1-MMP cleaves Sdc1 at the fibroblast surface, leading to paracrine growth stimulation of carcinoma cells by Sdc1 ectodomain. The relevance of MT1-MMP in paracrine interactions was further supported by coculture experiments with T47D cells and primary fibroblasts isolated from human breast carcinomas or matched normal breast tissue. Carcinoma-associated fibroblasts stimulated T47D cell proliferation significantly more than normal fibroblasts in three-dimensional coculture. Function-blocking anti-MT1-MMP antibody significantly inhibited the T47D cell growth stimulation in coculture with primary fibroblasts. In summary, these results ascribe a novel role to fibroblast-derived MT1-MMP in stromal-epithelial signaling in breast carcinomas.
Collapse
Affiliation(s)
- Gui Su
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Stacy A. Blaine
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Dianhua Qiao
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
| | - Andreas Friedl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison
- Pathology and Laboratory Medicine Service, Department of Veterans Affairs Medical Center, Madison, WI
| |
Collapse
|