1
|
Rabelink TJ, Wang G, van der Vlag J, van den Berg BM. The roles of hyaluronan in kidney development, physiology and disease. Nat Rev Nephrol 2024; 20:822-832. [PMID: 39191935 DOI: 10.1038/s41581-024-00883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
The hyaluronan (HA) matrix in the tissue microenvironment is crucial for maintaining homeostasis by regulating inflammatory signalling, endothelial-mesenchymal transition and cell migration. During development, covalent modifications and osmotic swelling of HA create mechanical forces that initiate midgut rotation, vascular patterning and branching morphogenesis. Together with its main cell surface receptor, CD44, HA establishes a physicochemical scaffold at the cell surface that facilitates the interaction and clustering of growth factors and receptors that is required for normal physiology. High-molecular-weight HA, tumour necrosis factor-stimulated gene 6, pentraxin 3 and CD44 form a stable pericellular matrix that promotes tissue regeneration and reduces inflammation. By contrast, breakdown of high-molecular-weight HA into depolymerized fragments by hyaluronidases triggers inflammatory signalling, leukocyte migration and angiogenesis, contributing to tissue damage and fibrosis in kidney disease. Targeting HA metabolism is challenging owing to its dynamic regulation and tissue-specific functions. Nonetheless, modulating HA matrix functions by targeting its binding partners holds promise as a therapeutic strategy for restoring tissue homeostasis and mitigating pathological processes. Further research in this area is warranted to enable the development of novel therapeutic approaches for kidney and other diseases characterized by dysregulated HA metabolism.
Collapse
Affiliation(s)
- Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Johnson AO, Shipman BM, Hunt BC, Learman BS, Brauer AL, Zhou SP, Hageman Blair R, De Nisco NJ, Armbruster CE. Function and contribution of two putative Enterococcus faecalis glycosaminoglycan degrading enzymes to bacteremia and catheter-associated urinary tract infection. Infect Immun 2024; 92:e0019924. [PMID: 38842305 PMCID: PMC11238560 DOI: 10.1128/iai.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.
Collapse
Affiliation(s)
- Alexandra O. Johnson
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Braden M. Shipman
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Benjamin C. Hunt
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Serena P. Zhou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, New York, USA
| | - Nicole J. De Nisco
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Calvi A, Bongrani A, Verzicco I, Figus G, Vicini V, Coghi P, Montanari A, Cabassi A. Urinary hyaluronidase activity is closely related to vasopressinergic system following an oral water load in men: a potential role in blood pressure regulation and early stages of hypertension development. Front Endocrinol (Lausanne) 2024; 15:1346082. [PMID: 38982989 PMCID: PMC11231081 DOI: 10.3389/fendo.2024.1346082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Blood pressure (BP) regulation is a complex process involving several factors, among which water-sodium balance holds a prominent place. Arginin-vasopressin (AVP), a key player in water metabolism, has been evoked in hypertension development since the 1980s, but, to date, the matter is still controversial. Hyaluronic acid metabolism has been reported to be involved in renal water management, and AVP appears to increase hyaluronidase activity resulting in decreased high-molecular-weight hyaluronan content in the renal interstitium, facilitating water reabsorption in collecting ducts. Hence, our aim was to evaluate urinary hyaluronidase activity in response to an oral water load in hypertensive patients (HT, n=21) compared to normotensive subjects with (NT+, n=36) and without (NT-, n=29) a family history of hypertension, and to study its association with BP and AVP system activation, expressed by serum copeptin levels and urine Aquaporin 2 (AQP2)/creatinine ratio. Methods Eighty-six Caucasian men were studied. Water load test consisted in oral administration of 15-20 ml of water/kg body weight over 40-45 min. BP, heart rate, serum copeptin, urine hyaluronidase activity and AQP2 were monitored for 4 hours. Results In response to water drinking, BP raised in all groups with a peak at 20-40 min. Baseline levels of serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio were similar among groups and all decreased after water load, reaching their nadir at 120 min and then gradually recovering to baseline values. Significantly, a blunted reduction in serum copeptin, urinary hyaluronidase activity and AQP2/creatinine ratio was observed in NT+ compared to NT- subjects. A strong positive correlation was also found between urinary hyaluronidase activity and AQP2/creatinine ratio, and, although limited to the NT- group, both parameters were positively associated with systolic BP. Discussion Our results demonstrate for the first time the existence in men of a close association between urinary hyaluronidase activity and vasopressinergic system and suggest that NT+ subjects have a reduced ability to respond to water loading possibly contributing to the blood volume expansion involved in early-stage hypertension. Considering these data, AVP could play a central role in BP regulation by affecting water metabolism through both hyaluronidase activity and AQP2 channel expression.
Collapse
Affiliation(s)
- Anna Calvi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Alice Bongrani
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ignazio Verzicco
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Giuliano Figus
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Vanni Vicini
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Pietro Coghi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Alberto Montanari
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Aderville Cabassi
- Clinica e Terapia Medica, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
- Cardiorenal and Hypertension Research Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Johnson AO, Shipman BM, Hunt BC, Learman BS, Brauer AL, Zhou SP, Blair RH, De Nisco NJ, Armbruster CE. Function and contribution of two putative Enterococcus faecalis glycosaminoglycan degrading enzymes to bacteremia and catheter-associated urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593205. [PMID: 38766094 PMCID: PMC11100720 DOI: 10.1101/2024.05.08.593205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Enterococcus faecalis is a common cause of healthcare acquired bloodstream infections and catheter associated urinary tract infections (CAUTI) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, Δ hylA exhibited defects in bladder colonization and dissemination to the bloodstream, and Δ hylB exhibited a defect in kidney colonization. Furthermore, a Δ hylA Δ hylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both HA and CS in vitro while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during stationary phase and also contributed to dampening of LPS-mediated NF-Bκ activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.
Collapse
|
5
|
Jin C, Zong Y. The role of hyaluronan in renal cell carcinoma. Front Immunol 2023; 14:1127828. [PMID: 36936902 PMCID: PMC10019822 DOI: 10.3389/fimmu.2023.1127828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is associated with high mortality rates worldwide and survival among RCC patients has not improved significantly in the past few years. A better understanding of the pathogenesis of RCC can enable the development of more effective therapeutic strategies against RCC. Hyaluronan (HA) is a glycosaminoglycan located in the extracellular matrix (ECM) that has several roles in biology, medicine, and physiological processes, such as tissue homeostasis and angiogenesis. Dysregulated HA and its receptors play important roles in fundamental cellular and molecular biology processes such as cell signaling, immune modulation, tumor progression and angiogenesis. There is emerging evidence that alterations in the production of HA regulate RCC development, thereby acting as important biomarkers as well as specific therapeutic targets. Therefore, targeting HA or combining it with other therapies are promising therapeutic strategies. In this Review, we summarize the available data on the role of abnormal regulation of HA and speculate on its potential as a therapeutic target against RCC.
Collapse
Affiliation(s)
- Chenchen Jin
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang, China
| | - Yunfeng Zong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Pravikova PD, Ivanova LN. Role of Nitric Oxide in Structural Rearrangements in the Renal Medullary Interstitium When Modeling Hypothyroidism in Rats with Different Blood Vasopressin Levels. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Wang X, Balaji S, Steen EH, Blum AJ, Li H, Chan CK, Manson SR, Lu TC, Rae MM, Austin PF, Wight TN, Bollyky PL, Cheng J, Keswani SG. High-molecular weight hyaluronan attenuates tubulointerstitial scarring in kidney injury. JCI Insight 2020; 5:136345. [PMID: 32396531 DOI: 10.1172/jci.insight.136345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
Renal fibrosis features exaggerated inflammation, extracellular matrix (ECM) deposition, and peritubular capillary loss. We previously showed that IL-10 stimulates high-molecular weight hyaluronan (HMW-HA) expression by fibroblasts, and we hypothesize that HMW-HA attenuates renal fibrosis by reducing inflammation and ECM remodeling. We studied the effects of IL-10 overexpression on HA production and scarring in mouse models of unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R) to investigate whether IL-10 antifibrotic effects are HA dependent. C57BL/6J mice were fed with the HA synthesis inhibitor, 4-methylumbelliferone (4-MU), before UUO. We observed that in vivo injury increased intratubular spaces, ECM deposition, and HA expression at day 7 and onward. IL-10 overexpression reduced renal fibrosis in both models, promoted HMW-HA synthesis and stability in UUO, and regulated cell proliferation in I/R. 4-MU inhibited IL-10-driven antifibrotic effects, indicating that HMW-HA is necessary for cytokine-mediated reduction of fibrosis. We also found that IL-10 induces in vitro HMW-HA production by renal fibroblasts via STAT3-dependent upregulation of HA synthase 2. We propose that IL-10-induced HMW-HA synthesis plays cytoprotective and antifibrotic roles in kidney injury, thereby revealing an effective strategy to attenuate renal fibrosis in obstructive and ischemic pathologies.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Emily H Steen
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Alexander J Blum
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Hui Li
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Scott R Manson
- Division of Pediatric Urology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Thomas C Lu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Meredith M Rae
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Paul F Austin
- Division of Pediatric Urology, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Cox A, Cannes do Nascimento N, Pires Dos Santos A, Sivasankar MP. Dehydration and Estrous Staging in the Rat Larynx: an in vivo Prospective Investigation. J Voice 2019; 35:77-84. [PMID: 31307900 DOI: 10.1016/j.jvoice.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This novel study sought to untangle the association between hydration state and the estrous cycle in the vocal folds, since the voice is reported to negatively change in speakers during the estrous cycle and with dehydration. We hypothesized that there would be alterations in vocal fold tissue morphology depending on hydration state and that these changes would vary with the estrous cycle. STUDY DESIGN Prospective, in vivo study design. METHODS Female Sprague Dawley rats (n = 30) were used in this study. Sixteen rats were systemically dehydrated to an average of 10% reduction in body weight by withholding water (range of body weight loss: 8%-13%). Fourteen rats were assigned to euhydrated, control condition. Estrous stage of female Sprague Dawley rats (n = 30) was determined via cytological evaluation of vaginal smears. Following euthanization, larynges were prepared for histological staining with hematoxylin and eosin, Masson's trichrome and alcian blue (pH 2.5). To quantify hyaluronan, alcian blue staining was completed pre- and posthyaluronidase incubation. The change in staining percent was quantified with image analysis algorithms and reported as the hyaluronan quantity. Relative collagen distribution (index of dehydration), hyaluronan quantity, and tissue morphology were the outcome measures. RESULTS Systemic dehydration was associated with changes in hyaluronan quantity in the rat vocal fold lamina propria. Dehydration did not significantly affect the collagen distribution nor the tissue morphology. Estrous stage alone does not impact the quantity of vocal fold hyaluronan, alter tissue morphology, or change collagen distribution. CONCLUSION Decreases in hyaluronan quantity in the lamina propria of the rat vocal fold may play a role in tissue fluid balance during systemic dehydration. Future studies will expand this work to investigate additional components of the vocal fold extracellular matrix to fully elucidate the impact of hydration state on the vocal fold.
Collapse
Affiliation(s)
- Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana.
| | | | | | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
9
|
Flores-Sandoval O, Sánchez-Briones ME, López-Rodríguez JF, Calvo-Turrubiartes MZ, Llamazares-Azuara L, Rodríguez-Martínez M. Highly suggestive preliminary evidence that the renal interstitium contracts in vivo. Physiol Rep 2018. [PMID: 28646097 PMCID: PMC5492211 DOI: 10.14814/phy2.13328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To learn more about controlling renal interstitial hydrostatic pressure (RIHP), we assessed its response to renal medullary direct interstitial volume expansion (rmDIVE = 100 μL bolus infusion/30 sec). Three experimental series (S) were performed in hydropenic, anesthetized, right‐nephrectomized, acute left renal‐denervated and renal perfusion pressure‐controlled rats randomly assigned to groups in each S. S1: Rats without hormonal clamp were contrasted before and after rmDIVE induced via 0.9% saline solution bolus (SS group) or 2% albumin in SS bolus (2% ALB + SS group). Subcapsular ΔRIHP rose slowly, progressively and similarly in both groups by ~3 mmHg. S2: Rats under hormonal clamp were contrasted before and after sham rmDIVE (time CTR group) and real rmDIVE induced via either SS bolus (SS group) or SS bolus containing the subcutaneous tissue fibroblast relaxant dibutyryl‐cAMP (SS + db‐cAMP group). ΔRIHP showed time, group, and time*group interaction effects with a biphasic response (early: ~1 mmHg; late: ~4 mmHg) in the SS group that was absent in the SS + db‐cAMP group. S3: Two groups of rats (SS and SS + db‐cAMP) under hormonal clamp were contrasted as in S2, producing similar ΔRIHP results to those of S2 but showing a slow, progressive, and indistinct decrease in renal outer medullary blood flow in both groups. These results provide highly suggestive preliminary evidence that the renal interstitium is capable of contracting reactively in vivo in response to rmDIVE with SS and demonstrate that such a response is abolished when db‐cAMP is interstitially and concomitantly infused.
Collapse
Affiliation(s)
- Omar Flores-Sandoval
- Integrative Physiology Laboratory, Department of Physiology and Biophysics, Autonomous University of San Luis Potosí, México
| | - María Eugenia Sánchez-Briones
- Integrative Physiology Laboratory, Department of Physiology and Biophysics, Autonomous University of San Luis Potosí, México
| | - Juan F López-Rodríguez
- Integrative Physiology Laboratory, Department of Physiology and Biophysics, Autonomous University of San Luis Potosí, México
| | - Miriam Z Calvo-Turrubiartes
- Integrative Physiology Laboratory, Department of Physiology and Biophysics, Autonomous University of San Luis Potosí, México
| | | | - Manuel Rodríguez-Martínez
- Integrative Physiology Laboratory, Department of Physiology and Biophysics, Autonomous University of San Luis Potosí, México
| |
Collapse
|
10
|
Stridh S, Palm F, Takahashi T, Ikegami-Kawai M, Friederich-Persson M, Hansell P. Hyaluronan Production by Renomedullary Interstitial Cells: Influence of Endothelin, Angiotensin II and Vasopressin. Int J Mol Sci 2017; 18:ijms18122701. [PMID: 29236055 PMCID: PMC5751302 DOI: 10.3390/ijms18122701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022] Open
Abstract
The content of hyaluronan (HA) in the interstitium of the renal medulla changes in relation to body hydration status. We investigated if hormones of central importance for body fluid homeostasis affect HA production by renomedullary interstitial cells in culture (RMICs). Simultaneous treatment with vasopressin and angiotensin II (Ang II) reduced HA by 69%. No change occurred in the mRNA expressions of hyaluronan synthase 2 (HAS2) or hyaluronidases (Hyals), while Hyal activity in the supernatant increased by 67% and CD44 expression reduced by 42%. The autocoid endothelin (ET-1) at low concentrations (10−10 and 10−8 M) increased HA 3-fold. On the contrary, at a high concentration (10−6 M) ET-1 reduced HA by 47%. The ET-A receptor antagonist BQ123 not only reversed the reducing effect of high ET-1 on HA, but elevated it to the same level as low concentration ET-1, suggesting separate regulating roles for ET-A and ET-B receptors. This was corroborated by the addition of ET-B receptor antagonist BQ788 to low concentration ET-1, which abolished the HA increase. HAS2 and Hyal2 mRNA did not alter, while Hyal1 mRNA was increased at all ET-1 concentrations tested. Hyal activity was elevated the most by high ET-1 concentration, and blockade of ET-A receptors by BQ123 prevented about 30% of this response. The present study demonstrates an important regulatory influence of hormones involved in body fluid balance on HA handling by RMICs, thereby supporting the concept of a dynamic involvement of interstitial HA in renal fluid handling.
Collapse
Affiliation(s)
- Sara Stridh
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
- Department of Health Sciences, Red Cross University College, SE-14152 Stockholm, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
| | - Tomoko Takahashi
- Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan; (T.T.); (M.I.-K.)
| | - Mayumi Ikegami-Kawai
- Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan; (T.T.); (M.I.-K.)
| | - Malou Friederich-Persson
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
| | - Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden; (S.S.); (F.P.); (M.F.-P.)
- Correspondence: ; Tel.: +46-184-714-130
| |
Collapse
|
11
|
Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 2016; 59:3-22. [PMID: 27746219 DOI: 10.1016/j.matbio.2016.10.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Synthesis, deposition, and interactions of hyaluronan (HA) with its cellular receptor CD44 are crucial events that regulate the onset and progression of tumors. The intracellular signaling pathways initiated by HA interactions with CD44 leading to tumorigenic responses are complex. Moreover, HA molecules may perform dual functions depending on their concentration and size. Overexpression of variant isoforms of CD44 (CD44v) is most commonly linked to cancer progression, whereas their loss is associated with inhibition of tumor growth. In this review, we highlight that the regulation of HA synthases (HASes) by post-translational modifications, such as O-GlcNAcylation and ubiquitination, environmental factors and the action of microRNAs is important for HA synthesis and secretion in the tumor microenvironment. Moreover, we focus on the roles and interactions of CD44 with various proteins that reside extra- and intracellularly, as well as on cellular membranes with particular reference to the CD44-HA axis in cancer stem cell functions, and the importance of CD44/CD44v6 targeting to inhibit tumorigenesis.
Collapse
|
12
|
The Biochemistry of Hyaluronan in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Hansell P, Palm F. A role for the extracellular matrix component hyaluronan in kidney dysfunction during ACE-inhibitor fetopathy. Acta Physiol (Oxf) 2015; 213:795-804. [PMID: 25600777 DOI: 10.1111/apha.12456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/01/2014] [Accepted: 01/11/2015] [Indexed: 12/13/2022]
Abstract
Despite data showing that inhibitors of the renin-angiotensin system increase the risks of fetal morbidity and dysfunctionality later in life, their use during pregnancy has increased. The fetopathy induced by angiotensin converting enzyme (ACE) inhibitors is characterized by anuria, hypotension and growth restriction, but can also be associated with pulmonary hypoplasia. In the kidney, this fetopathy includes atrophy of the medulla, reduced number of glomeruli, developmental lesions of tubules and vessels, tubulointerstitial inflammation and extracellular matrix accumulation. Although angiotensin II (Ang II) inhibition during nephrogenesis interferes with normal growth and development, this review will focus on effects of the heavily accumulated matrix component hyaluronan (HA). An important mechanism of HA accumulation during nephrogenesis is disruption of its normal reduction as a consequence of lack of Ang II activation of hyaluronidase. Hyaluronan has very large water-attracting properties and is pro-inflammatory when fragmented. The ensuing inflammation and interstitial oedema affect kidney function. Hyaluronan is colocalized with CD44 overexpression and infiltrating immune cells. These properties make HA a plausible contributor to the observed structural and functional kidney defects associated with the fetopathy. Available data support an involvement of HA in kidney dysfunction of the foetus and during adulthood due to the physico-chemical characteristics of HA. No clinical treatment for HA accumulation exists. Treatment with the HA-degrading enzyme hyaluronidase and an HA synthesis inhibitor has been tested successfully in experimental models in the kidney, heart and pancreas. Reduced HA accumulation to reduce interstitial oedema and inflammation may improve organ function, but this concept needs to be tested in a controlled study before causal relationships can be established.
Collapse
Affiliation(s)
- P. Hansell
- Division of Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - F. Palm
- Division of Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
- Department of Medical and Health Sciences; Linköping University; Linköping Sweden
| |
Collapse
|
14
|
Colombaro V, Jadot I, Declèves AE, Voisin V, Giordano L, Habsch I, Flamion B, Caron N. Hyaluronidase 1 and hyaluronidase 2 are required for renal hyaluronan turnover. Acta Histochem 2015; 117:83-91. [PMID: 25468725 DOI: 10.1016/j.acthis.2014.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
Abstract
Hyaluronidase 1 (HYAL1) and hyaluronidase 2 (HYAL2) are the major hyaluronidases acting synergistically to degrade hyaluronan (HA). In the kidney, HA is distributed heterogeneously. Our goal was to determine the consequences of a lack of either HYAL1 or HYAL2 (using specific knockout mice) on renal function and on renal HA accumulation. Experiments were performed in Hyal1(-/-) and Hyal2(-/-) mice and in their wild-type controls. HA concentration was measured in the plasma and kidney tissue and its distribution through the different kidney zones was examined by immunohistochemistry. Relative mRNA expressions of HYAL1, HYAL2 and the 3 main HA synthases were evaluated by quantitative RT-PCR. Results: Kidney function was not impaired in the knockout mice but they displayed elevated HA concentrations in the plasma and in the kidney. Hyal1(-/-) mice presented an accumulation of HA inside the proximal tubular cells whereas Hyal2(-/-) mice showed HA accumulation in the interstitial space. In the cortex and in the outer medulla, HYAL1 mRNA expression was up-regulated in Hyal2(-/-) mice. From our study we conclude that somatic hyaluronidases are not required for renal function. However, HYAL1 is necessary for the breakdown of intracellular HA in the cortex, whereas HYAL2 is essential for the degradation of extracellular HA in all kidney regions.
Collapse
|
15
|
Stridh S, Palm F, Takahashi T, Ikegami-Kawai M, Hansell P. Inhibition of mTOR activity in diabetes mellitus reduces proteinuria but not renal accumulation of hyaluronan. Ups J Med Sci 2015; 120:233-40. [PMID: 26175092 PMCID: PMC4816883 DOI: 10.3109/03009734.2015.1062442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Accumulation of extracellular matrix (ECM) components is an early sign of diabetic nephropathy. Also the glycosaminoglycan hyaluronan (HA) is elevated in the renal interstitium during experimental diabetes. The mammalian target of rapamycin (mTOR) pathway participates in the signaling of hyperglycemia-induced ECM accumulation in the kidney, but this has not yet been investigated for HA. We hypothesized that interstitial HA accumulation during diabetes may involve mTOR activation. METHODS Diabetic rats (6 weeks post-streptozotocin (STZ)) were treated with rapamycin to inhibit mTOR or vehicle for 2 additional weeks. Kidney function (glomerular filtration rate, renal blood flow, urine output) and regional renal HA content were thereafter analyzed. The ability of the animals to respond to desmopressin was also tested. RESULTS Diabetic animals displayed hyperglycemia, proteinuria, hyperfiltration, renal hypertrophy, increased diuresis with reduced urine osmolality, and reduced weight gain. Cortical and outer medullary HA was elevated in diabetic rats. Urine hyaluronidase activity was almost doubled in diabetic rats compared with controls. The ability to respond to desmopressin was absent in diabetic rats. Renal blood flow and arterial blood pressure were unaffected by the diabetic state. In diabetic rats treated with rapamycin the proteinuria was reduced by 32%, while all other parameters were unaffected. CONCLUSION Regional renal accumulation of the ECM component HA is not sensitive to mTOR inhibition by rapamycin, while proteinuria is reduced in established STZ-induced diabetes. Whether the diabetes-induced renal accumulation of HA occurs through different pathways than other ECM components, or is irreversible after being established, remains to be shown.
Collapse
Affiliation(s)
- Sara Stridh
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Tomoko Takahashi
- Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | | | - Peter Hansell
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Correspondence: Peter Hansell, Division of Integrative Physiology, Department of Medical Cell Biology, BMC, PO Box 571, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
16
|
Joviano-Santos JV, Sá MA, Maria MLAD, Almeida TCS, Geraldo V, Oliveira S, Ladeira LO, Ferreira AJ. Evaluation of cardiovascular toxicity of carbon nanotubes functionalized with sodium hyaluronate in oral regenerative medicine. ACTA ACUST UNITED AC 2014; 47:560-6. [PMID: 24863649 PMCID: PMC4123835 DOI: 10.1590/1414-431x20143894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/17/2014] [Indexed: 11/26/2022]
Abstract
It has been demonstrated that carbon nanotubes (CNTs) associated with sodium
hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before
clinical application of HY-CNTs, it is important to assess their biocompatibility.
Moreover, cardiac toxicity may be caused by the translocation of these particles to
the blood stream. The aim of this study was to evaluate possible changes in
cardiovascular function in male Wistar rats whose tooth sockets were treated with
either CNTs or HY-CNTs (100 μg/mL, 0.1 mL). Blood pressure and heart rate were
monitored in conscious rats 7 days after treatment. Cardiac function was evaluated
using the Langendorff perfusion technique. The data showed no changes in blood
pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no
significant changes in cardiac function were found in any of the groups. To confirm
these findings, experiments were conducted in rats injected intraperitoneally with a
high concentration of either CNTs or HY-CNTs (0.75 mg/kg). The same parameters were
analyzed and similar results were observed. The results obtained 7 days following
injection indicate that the administration of low concentrations of CNTs or HY-CNTs
directly into tooth sockets did not cause any significant change in cardiovascular
function in the rats. The present findings support the possibility of using these
biocomposites in humans.
Collapse
Affiliation(s)
- J V Joviano-Santos
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M A Sá
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M L A de Maria
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - T C S Almeida
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - V Geraldo
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - S Oliveira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - L O Ladeira
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A J Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
17
|
Stridh S, Palm F, Hansell P. Inhibition of hyaluronan synthesis in rats reduces renal ability to excrete fluid and electrolytes during acute hydration. Ups J Med Sci 2013; 118:217-21. [PMID: 24102146 PMCID: PMC4190891 DOI: 10.3109/03009734.2013.834013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hyaluronan (HA) is the dominant glycosaminoglycan in the renomedullary interstitium. Renomedullary HA has been implicated in tubular fluid handling due to its water-attracting properties and the changes occurring in parallel to acute variations in the body hydration status. METHODS HA production was inhibited by 4-methylumbelliferone (4-MU in drinking water for 5 days, 1.45 ± 0.07 g/day/kg body weight) in rats prior to hydration. RESULTS Following hypotonic hydration for 135 min in control animals, diuresis and osmotic excretion increased while sodium excretion and glomerular filtration rate (GFR) remained unchanged. The medullary and cortical HA contents were 7.85 ± 1.29 ng/mg protein and 0.08 ± 0.01 ng/mg protein, respectively. Medullary HA content after 4-MU was 38% of that in controls (2.98 ± 0.95 ng/g protein, p < 0.05), while the low cortical levels were unaffected. Baseline urine flow was not different from that in controls. The diuretic response to hydration was, however, only 51% of that in controls (157 ± 36 versus 306 ± 54 µl/g kidney weight/135 min, p < 0.05) and the osmolar excretion only 47% of that in controls (174 ± 47 versus 374 ± 41 µOsm/g kidney weight/135 min, p < 0.05). Sodium excretion, GFR, and arterial blood pressure were similar to that in control rats and unaltered during hydration. CONCLUSIONS Reduction of renomedullary interstitial HA using 4-MU reduces the ability of the kidney to respond appropriately upon acute hydration. The results strengthen the concept of renomedullary HA as a modulator of tubular fluid handling by changing the physicochemical properties of the interstitial space.
Collapse
Affiliation(s)
- Sara Stridh
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Hansell
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Ivanova LN, Babina AV, Baturina GS, Katkova LE. Effect of vasopressin on the expression of genes for key enzymes of hyaluronan turnover in Wistar Albino Glaxo and Brattleboro rat kidneys. Exp Physiol 2013; 98:1608-19. [PMID: 23955305 DOI: 10.1113/expphysiol.2013.073163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lyudmila N Ivanova
- L. N. Ivanova: Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | | | | | | |
Collapse
|
19
|
Abstract
Prostanoids are prominent, yet complex, components in the maintenance of body water homeostasis. Recent functional and molecular studies have revealed that the local lipid mediator PGE2 is involved both in water excretion and absorption. The biologic actions of PGE2 are exerted through four different G-protein-coupled receptors; designated EP1-4, which couple to separate intracellular signaling pathways. Here, we discuss new developments in our understanding of the actions of PGE2 that have been uncovered utilizing receptor specific agonists and antagonists, EP receptor and PG synthase knockout mice, polyuric animal models, and the new understanding of the molecular regulation of collecting duct water permeability. The role of PGE2 in urinary concentration comprises a variety of mechanisms, which are not fully understood and likely depend on which receptor is activated under a particular physiologic condition. EP3 and microsomal PG synthase type 1 play a role in decreasing collecting duct water permeability and increasing water excretion, whereas EP2 and EP4 can bypass vasopressin signaling and increase water reabsorption through two different intracellular signaling pathways. PGE2 has an intricate role in urinary concentration, and we now suggest how targeting specific prostanoid receptor signaling pathways could be exploited for the treatment of disorders in water balance.
Collapse
Affiliation(s)
- Emma T B Olesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
20
|
Joerges J, Schulz T, Wegner J, Schumacher U, Prehm P. Regulation of cell volume by glycosaminoglycans. J Cell Biochem 2012; 113:340-8. [PMID: 21928313 DOI: 10.1002/jcb.23360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cell volume is regulated by a delicate balance between ion distribution across the plasma membrane and the osmotic properties of intra- and extracellular components. Using a fluorescent calcein indicator, we analysed the effects of glycosaminoglycans on the cell volume of hyaluronan producing fibroblasts and hyaluronan deficient HEK cells over a time period of 30 h. Exogenous glycosaminoglycans induced cell blebbing after 2 min and swelling of fibroblasts to about 110% of untreated cell volume at low concentrations which decreased at higher concentrations. HEK cells did not show cell blebbing and responded by shrinking to 65% of untreated cell volume. Heparin induced swelling of both fibroblasts and HEK cells. Hyaluronidase treatment or inhibition of hyaluronan export led to cell shrinkage indicating that the hyaluronan coat maintained fibroblasts in a swollen state. These observations were explained by the combined action of the Donnan effect and molecular crowding.
Collapse
Affiliation(s)
- Jelena Joerges
- Institute of Physiological Chemistry and Pathobiochemistry, Muenster University Hospital, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
21
|
Stridh S, Palm F, Hansell P. Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1235-49. [PMID: 22513743 DOI: 10.1152/ajpregu.00332.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The glycosaminoglycan (GAG) hyaluronan (HA) is recognized as an important structural component of the extracellular matrix, but it also interacts with cells during embryonic development, wound healing, inflammation, and cancer; i.e., important features in normal and pathological conditions. The specific physicochemical properties of HA enable a unique hydration capacity, and in the last decade it was revealed that in the interstitium of the renal medulla, where the HA content is very high, it changes rapidly depending on the body hydration status while the HA content of the cortex remains unchanged at very low amounts. The kidney, which regulates fluid balance, uses HA dynamically for the regulation of whole body fluid homeostasis. Renomedullary HA elevation occurs in response to hydration and during dehydration the opposite occurs. The HA-induced alterations in the physicochemical characteristics of the interstitial space affects fluid flux; i.e., reabsorption. Antidiuretic hormone, nitric oxide, angiotensin II, and prostaglandins are classical hormones/compounds involved in renal fluid handling and are important regulators of HA turnover during variations in hydration status. One major producer of HA in the kidney is the renomedullary interstitial cell, which displays receptors and/or synthesis enzymes for the hormones mentioned above. During several kidney disease states, such as ischemia-reperfusion injury, tubulointerstitial inflammation, renal transplant rejection, diabetes, and kidney stone formation, HA is upregulated, which contributes to an abnormal phenotype. In these situations, cytokines and other growth factors are important stimulators. The immunosuppressant agent cyclosporine A is nephrotoxic and induces HA accumulation, which could be involved in graft rejection and edema formation. The use of hyaluronidase to reduce pathologically overexpressed levels of tissue HA is a potential therapeutic tool since diuretics are less efficient in removing water bound to HA in the interstitium. Although the majority of data describing the role of HA originate from animal and cell studies, the available data from humans demonstrate that an upregulation of HA also occurs in diabetic kidneys, in transplant-rejected kidneys, and during acute tubular necrosis. This review summarizes the current knowledge regarding interstitial HA in the role of regulating kidney function during normal and pathological conditions. It encompasses mechanistic insights into the background of the heterogeneous intrarenal distribution of HA; i.e., late nephrogenesis, its regulation during variations in hydration status, and its involvement during several pathological conditions. Changes in hyaluronan synthases, hyaluronidases, and binding receptor expression are discussed in parallel.
Collapse
Affiliation(s)
- Sara Stridh
- Dept. of Medical Cell Biology, Uppsala Univ., Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
22
|
Stridh S, Kerjaschki D, Chen Y, Rügheimer L, Astrand ABM, Johnsson C, Friberg P, Olerud J, Palm F, Takahashi T, Ikegami-Kawai M, Hansell P. Angiotensin converting enzyme inhibition blocks interstitial hyaluronan dissipation in the neonatal rat kidney via hyaluronan synthase 2 and hyaluronidase 1. Matrix Biol 2010; 30:62-9. [PMID: 20933085 DOI: 10.1016/j.matbio.2010.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 09/01/2010] [Accepted: 09/29/2010] [Indexed: 11/18/2022]
Abstract
A functional renin-angiotensin system (RAS) is required for normal kidney development. Neonatal inhibition of the RAS in rats results in long-term pathological renal phenotype and causes hyaluronan (HA), which is involved in morphogenesis and inflammation, to accumulate. To elucidate the mechanisms, intrarenal HA content was followed during neonatal completion of nephrogenesis with or without angiotensin converting enzyme inhibition (ACEI) together with mRNA expression of hyaluronan synthases (HAS), hyaluronidases (Hyal), urinary hyaluronidase activity and cortical lymphatic vessels, which facilitate the drainage of HA from the tissue. In 6-8days old control rats cortical HA content was high and reduced by 93% on days 10-21, reaching adult low levels. Medullary HA content was high on days 6-8 and then reduced by 85% to 12-fold above cortical levels at day 21. In neonatally ACEI-treated rats the reduction in HA was abolished. Temporal expression of HAS2 corresponded with the reduction in HA content in the normal kidney. In ACEI-treated animals cortical HAS2 remained twice the expression of controls. Medullary Hyal1 increased in controls but decreased in ACEI-treated animals. Urine hyaluronidase activity decreased with time in control animals while in ACEI-treated animals it was initially 50% lower and did not change over time. Cells expressing the lymphatic endothelial mucoprotein podoplanin in ACEI-treated animals were increased 18-fold compared to controls suggesting compensation. In conclusion, the high renal HA content is rapidly reduced due to reduced HAS2 and increased Hyal1 mRNA expressions. Normal angiotensin II function is crucial for inducing these changes. Due to the extreme water-attracting and pro-inflammatory properties of HA, accumulation in the neonatally ACEI-treated kidneys may partly explain the pathological renal phenotype of the adult kidney, which include reduced urinary concentration ability and tubulointerstitial inflammation.
Collapse
Affiliation(s)
- S Stridh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sci 2010; 87:215-22. [DOI: 10.1016/j.lfs.2010.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/09/2010] [Accepted: 06/11/2010] [Indexed: 11/24/2022]
|
24
|
Reed RK, Rubin K. Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res 2010; 87:211-7. [PMID: 20472565 DOI: 10.1093/cvr/cvq143] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This review will summarize current knowledge on the role of the extracellular matrix (ECM) in general and on the interstitial fluid pressure (P(if)) in particular with regard to their importance in transcapillary exchange. The fluid volume in the interstitial space is normally regulated within narrow limits by automatic re-adjustment of the interstitial hydrostatic and colloid osmotic pressures in response to perturbations in capillary filtration and by the lymphatics. Contrary to this commonly accepted view, P(if) can become an active force and create a fluid flux across the capillaries in several inflammatory reactions and trauma situations rather than limit the changes occurring. The molecular mechanisms involved in the lowering of P(if) include the release of cellular tension exerted on the collagen and microfibril networks in the connective tissue via the collagen-binding beta(1)-integrins, thereby allowing the glycosaminoglycan ground substance, which is normally underhydrated, to expand and take up fluid. Several growth factors and cytokines, including the platelet-derived growth factor BB, are able to reverse a lowering of P(if) and restore the normal compaction of the ECM. The magnitude of the lowering of P(if) varies with the inflammatory response. In several inflammatory reactions, a lowering of P(if) to -5 to -10 mmHg is seen, which will increase capillary filtration by 10-20 times since the normal capillary filtration pressure is usually 0.5-1 mmHg (skin and skeletal muscle). Unless this lowering of P(if) is taken into account, the enhanced solute flux resulting from an inflammatory response will be ascribed to an increased capillary permeability.
Collapse
Affiliation(s)
- Rolf K Reed
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, Norway.
| | | |
Collapse
|