1
|
Tam KT, Baar K. Using load to improve tendon/ligament tissue engineering and develop novel treatments for tendinopathy. Matrix Biol 2025; 135:39-54. [PMID: 39645093 DOI: 10.1016/j.matbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Tendon and ligament injuries are highly prevalent but heal poorly, even with proper care. Restoration of native tissue function is complicated by the fact that these tissues vary anatomically in terms of their mechanical properties, composition, and structure. These differences develop as adaptations to diverse mechanical demands; however, pathology may alter the loads placed on the tissue. Musculoskeletal loads can be generally categorized into tension, compression, and shear. Each of these regulate distinct molecular pathways that are involved in tissue remodeling, including many of the canonical tenogenic genes. In this review, we provide a perspective on the stage-specific regulation of mechanically sensitive pathways during development and maturation of tendon and ligament tissue, including scleraxis, mohawk, and others. Furthermore, we discuss structural features of healing and diseased tendon that may contribute to aberrant loading profiles, and how the associated disturbance in molecular signaling may contribute to incomplete healing or the formation of degenerative phenotypes. The perspectives provided here draw from studies spanning in vitro, animal, and human experiments of healthy and diseased tendon to propose a more targeted approach to advance rehabilitation, orthobiologics, and tissue engineering.
Collapse
Affiliation(s)
- Kenneth T Tam
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Keith Baar
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616, USA; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA; VA Northern California Health Care System, Mather, CA 95655, USA.
| |
Collapse
|
2
|
Li Y, Liu A, Wang J, Yang C, Lv K, He W, Wu J, Chen W. Suture-anchored cutaneous tension induces persistent hypertrophic scarring in a novel murine model. BURNS & TRAUMA 2024; 12:tkae051. [PMID: 39429643 PMCID: PMC11491161 DOI: 10.1093/burnst/tkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/31/2023] [Indexed: 10/22/2024]
Abstract
Background Hypertrophic scars cause impaired skin appearance and function, seriously affecting physical and mental health. Due to medical ethics and clinical accessibility, the collection of human scar specimens is frequently restricted, and the establishment of scar experimental animal models for scientific research is urgently needed. The four most commonly used animal models of hypertrophic scars have the following drawbacks: the rabbit ear model takes a long time to construct; the immunodeficient mouse hypertrophic scar model necessitates careful feeding and experimental operations; female Duroc pigs are expensive to purchase and maintain, and their large size makes it difficult to produce a significant number of models; and mouse scar models that rely on tension require special skin stretch devices, which are often damaged and shed, resulting in unstable model establishment. Our group overcame the shortcomings of previous scar animal models and created a new mouse model of hypertrophic scarring induced by suture anchoring at the wound edge. Methods We utilized suture anchoring of incisional wounds to impose directional tension throughout the healing process, restrain wound contraction, and generate granulation tissue, thus inducing scar formation. Dorsal paired incisions were generated in mice, with wound edges on the upper back sutured to the rib cage and the wound edges on the lower back relaxed as a control. Macroscopic manifestation, microscopic histological analysis, mRNA sequencing, bioinformatics, and in vitro cell assays were also conducted to verify the reliability of this method. Results Compared with those in relaxed controls, the fibrotic changes in stretched wounds were more profound. Histologically, the stretched scars were hypercellular, hypervascular, and hyperproliferative with disorganized extracellular matrix deposition, and displayed molecular hallmarks of hypertrophic fibrosis. In addition, the stretched scars exhibited transcriptional overlap with mechanically stretched scars, and human hypertrophic and keloid scars. Phosphatidylinositol 3-kinase-serine/threonine-protein kinase B signaling was implicated as a profibrotic mediator of apoptosis resistance under suture-induced tension. Conclusions This straightforward murine model successfully induces cardinal molecular and histological features of pathological hypertrophic scarring through localized suture tension to inhibit wound contraction. The model enables us to interrogate the mechanisms of tension-induced fibrosis and evaluate anti-scarring therapies.
Collapse
Affiliation(s)
- Yashu Li
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Anqi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jingyan Wang
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Changsheng Yang
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Kaiyang Lv
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan main Street, Shapingba District, Chongqing 400038, People's Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang Road, Futian District, Shenzhen 518035, People's Republic of China
| | - Wenbin Chen
- Department of Plastic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kangjiang Road, Yangpu District, Shanghai 200092, People's Republic of China
| |
Collapse
|
3
|
Mizuno Y, Takata Y, Yoshioka K, Demura S, Nakase J. One-Year Changes in Collagen Type in Semitendinosus Tendons: A Case Study Using Tissues Obtained From a Growing Patient. Cureus 2024; 16:e67564. [PMID: 39310645 PMCID: PMC11416825 DOI: 10.7759/cureus.67564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, there have been concerns about the high postoperative re-injury rate associated with the use of the semitendinosus tendon (ST) as an autograft for anterior cruciate ligament reconstruction in adolescent patients before the closure of the epiphyseal line. Our previous studies showed that this high re-injury is related to the histological and mechanical immaturity of ST in adolescent patients. Moreover, the overall structure of collagen fibers is strengthened with the application of traction force to tendon tissue. Therefore, it is assumed that, in vivo, bone growth and increased height increase the traction force applied to tendon tissue and the percentage of type I collagen, which has a remarkable physical strength. The present study aimed to investigate the changes in the content of ST's type I collagen in an adolescent patient over one year. The patient was an 11-year-old male with bilateral patellar dislocations. The orthopedic surgeon performed medial patellofemoral ligament reconstruction on the left knee using an ST graft, followed by a similar procedure on the right knee one year later. ST tissue that would have been discarded during each procedure was harvested and used. The bone of the patient's legs grew approximately 8 cm during the one-year period. The obtained tissues were immunostained and microscopically observed to evaluate the area content of type I and III collagen. The area content of type I collagen in STs collected from the patient was 66%. The area content of type I collagen increased rapidly to 95% one year later. A comparison of the two STs obtained from the patient in the first half of their 10th year showed that the type I collagen content of the STs increased rapidly over one year. This fact may provide a preliminary insight into the prevention of re-injury when selecting the autograft for anterior cruciate ligament (ACL) reconstruction in adolescent patients.
Collapse
Affiliation(s)
- Yushin Mizuno
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
- Section of Rehabilitation, Kanazawa University Hospital, Kanazawa, JPN
| | - Yasushi Takata
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| | - Kazuaki Yoshioka
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| | - Junsuke Nakase
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| |
Collapse
|
4
|
Mizuno Y, Takata Y, Yoshioka K, Demura S, Nakase J. Collagen-Type Composition in the Semitendinosus, Quadriceps, and Patellar Tendons of a 22-Year-Old Patient: A Case Report. Cureus 2024; 16:e61324. [PMID: 38947600 PMCID: PMC11213621 DOI: 10.7759/cureus.61324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Graft failure is a common postoperative complication after anterior cruciate ligament (ACL) reconstruction. Recently, a theory has emerged that histological and microstructural factors of autografts may be related to graft failure. We simultaneously collected the semitendinosus tendon (ST), quadriceps tendon (QT), and patellar tendon (PT) from a 22-year-old patient to provide insights into the differences in the collagen-type composition of the three tendons in skeletally mature patients. These findings may serve as a basis for selecting autografts for ACL to reduce graft failure rates. The patient was a 22-year-old female who required the removal of artificial ligament, screws, and washers and medial patellofemoral ligament (MPFL) reconstruction with an ST autograft after two surgeries for recurrent dislocation of the left patella. The ST, QT, and PT obtained during necessary intraoperative procedures were used as samples. The tissues were processed and immunostained; this was followed by confocal microscopy. Evaluation was performed by calculating the percentage of areas positive for collagen types I and III.The percentage of type I collagen in the ST, QT, and PT groups was 88%, 85%, and 88%, respectively.The collagen-type composition was examined following simultaneous collection of the ST, QT, and PT. The results revealed no significant differences in the content of physically strong type I collagen, which supports previous findings showing that the clinical outcomes after ACL reconstruction do not vary with the autograft used.
Collapse
Affiliation(s)
- Yushin Mizuno
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
- Section of Rehabilitation, Kanazawa University Hospital, Kanazawa, JPN
| | - Yasushi Takata
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| | - Kazuaki Yoshioka
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| | - Satoru Demura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| | - Junsuke Nakase
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, JPN
| |
Collapse
|
5
|
Cady C, Nair K, Rodriguez HC, Rust B, Ghandour S, Potty A, Gupta A. Optimization of Polycaprolactone and Type I Collagen Scaffold for Tendon Tissue Regeneration. Cureus 2024; 16:e56930. [PMID: 38665704 PMCID: PMC11044072 DOI: 10.7759/cureus.56930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Collagen synthesis is vital for restoring musculoskeletal tissues, particularly in tendon and ligamentous structures. Tissue engineering utilizes scaffolds for cell adhesion and differentiation. Although synthetic scaffolds offer initial strength, their long-term stability is surpassed by biological scaffolds. Combining polycaprolactone (PCL) toughness with collagen in scaffold design, this study refines fabrication via electrospinning, aiming to deliver enduring biomimetic matrices for widespread applications in musculoskeletal repair. Methods Electrospinning employed four solutions with varied collagen and PCL concentrations, dissolved in chloroform, methanol, and hexafluoro-2-propanol. Solutions were combined to yield 60 mg/mL concentrations with different collagen/PCL ratios. Electrospinning at 12-14kV voltage produced scaffolds, followed by vacuum-drying. Collagen coating was applied to PCL and 15% collagen/PCL scaffolds using a 0.1% collagen solution. SEM characterized fiber morphology, tensile testing was conducted to determine the mechanical properties of the scaffold, and Fourier-transform infrared (FTIR) spectroscopy analyzed scaffold composition. Atomic force microscopy (AFM) analyzed the stiffness properties of individual fibers, and a finite element model was developed to predict the mechanical properties. Cell culture involved seeding human bone marrow mesenchymal stem cells onto scaffolds, which were assessed through Alamar Blue assay and confocal imaging. Results Various scaffolds (100% PCL, PCL-15% collagen, PCL-25% collagen, PCL-35% collagen) were fabricated to emulate the extracellular matrix, revealing collagen's impact on fiber diameter reduction with increasing concentration. Tensile testing highlighted collagen's initial enhancement of mechanical strength, followed by a decline beyond PCL-15% collagen. FTIR spectroscopy detected potential hydrogen bonding between collagen and PCL. A finite element model predicted scaffold response to external forces which was validated by the tensile test data. Cell viability and proliferation assays demonstrated successful plating on all scaffolds, with optimal proliferation observed in PCL-25% collagen. Confocal imaging confirmed stem cell integration into the three-dimensional material. Collagen coating preserved nanofiber morphology, with no significant changes in diameter. Coating of collagen significantly altered the tensile strength of the scaffolds at the macro scale. AFM highlighted stiffness differences between PCL and collagen-coated PCL mats at the single fiber scale. The coating process did not significantly enhance initial cell attachment but promoted increased proliferation on collagen-coated PCL scaffolds. Conclusion The study reveals collagen-induced mechanical and morphological alterations, influencing fiber alignment, diameter, and chemical composition while emphasizing scaffolds' vital role in providing a controlled niche for stem cell proliferation and differentiation. The optimization of each of these scaffold characteristics and subsequent finite element modeling can lead to highly repeatable and ideal scaffold properties for stem cell integration and proliferation.
Collapse
Affiliation(s)
- Craig Cady
- Biology, Bradley University, Peoria, USA
| | - Kalyani Nair
- Mechanical Engineering, Bradley University, Peoria, USA
| | | | - Brandon Rust
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | | | - Anish Potty
- Orthopedics, South Texas Orthopaedic Research Institute, Laredo, USA
| | - Ashim Gupta
- Regenerative Medicine, Future Biologics, Lawrenceville, USA
- Orthopedics and Regenerative Medicine, Regenerative Orthopedics, Noida, IND
- Regenerative Medicine, BioIntegrate, Lawrenceville, USA
- Orthopedics, South Texas Orthopaedic Research Institute, Laredo, USA
| |
Collapse
|
6
|
Hui WH, Chen YL, Chang SW. Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity. Int J Biol Macromol 2024; 254:127603. [PMID: 37871726 DOI: 10.1016/j.ijbiomac.2023.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Crosslinking plays an important role in collagen-based tissues since it affects mechanical behavior and tissue metabolism. Aging and diabetes affect the type and density of crosslinking, effectively altering tissue properties. However, most studies focus on these effects under large stress rather than daily activities. We focus on the deformation mechanisms and structural change at the binding sites for integrins, proteoglycans, and collagenase in collagen fibrils using a fully atomistic model. We show that high-connectivity enzymatic crosslinking (our "HC" model, representing normal tissues) and advanced-glycation end-products (our "Glucosepane" model, which increase in diabetes) result in uniform deformation under daily activity, but low-connectivity enzymatic crosslinking (our "LC" model, representing aging tissues) does not. In particular, the HC model displays more sliding, which may explain the ability of healthy tissues to absorb more strain energy. In contrast, AGEs induce instability in the structures near the binding sites, which would affect the tissue metabolism of the collagen molecule. Our results provide important insights into the molecular mechanisms of collagen and a possible explanation for the role of crosslinking in tissues undergoing daily activity.
Collapse
Affiliation(s)
- Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Yen-Lin Chen
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
7
|
Liu S, Al-Danakh A, Wang H, Sun Y, Wang L. Advancements in scaffold for treating ligament injuries; in vitro evaluation. Biotechnol J 2024; 19:e2300251. [PMID: 37974555 DOI: 10.1002/biot.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Tendon/ligament (T/L) injuries are a worldwide health problem that affects millions of people annually. Due to the characteristics of tendons, the natural rehabilitation of their injuries is a very complex and lengthy process. Surgical treatment of a T/L injury frequently necessitates using autologous or allogeneic grafts or synthetic materials. Nonetheless, these alternatives have limitations in terms of mechanical properties and histocompatibility, and they do not permit the restoration of the original biological function of the tissue, which can negatively impact the patient's quality of life. It is crucial to find biological materials that possess the necessary properties for the successful surgical treatment of tissues and organs. In recent years, the in vitro regeneration of tissues and organs from stem cells has emerged as a promising approach for preparing autologous tissue and organs, and cell culture scaffolds play a critical role in this process. However, the biological traits and serviceability of different materials used for cell culture scaffolds vary significantly, which can impact the properties of the cultured tissues. Therefore, this review aims to analyze the differences in the biological properties and suitability of various materials based on scaffold characteristics such as cell compatibility, degradability, textile technologies, fiber arrangement, pore size, and porosity. This comprehensive analysis provides valuable insights to aid in the selection of appropriate scaffolds for in vitro tissue and organ culture.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haowen Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Malta MD, Cerqueira MT, Marques AP. Extracellular matrix in skin diseases: The road to new therapies. J Adv Res 2023; 51:149-160. [PMID: 36481476 PMCID: PMC10491993 DOI: 10.1016/j.jare.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a vital structure with a dynamic and complex organization that plays an essential role in tissue homeostasis. In the skin, the ECM is arranged into two types of compartments: interstitial dermal matrix and basement membrane (BM). All evidence in the literature supports the notion that direct dysregulation of the composition, abundance or structure of one of these types of ECM, or indirect modifications in proteins that interact with them is linked to a wide range of human skin pathologies, including hereditary, autoimmune, and neoplastic diseases. Even though the ECM's key role in these pathologies has been widely documented, its potential as a therapeutic target has been overlooked. AIM OF REVIEW This review discusses the molecular mechanisms involved in three groups of skin ECM-related diseases - genetic, autoimmune, and neoplastic - and the recent therapeutic progress and opportunities targeting ECM. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the implications of alterations in ECM components and in BM-associated molecules that are determinant for guaranteeing its function in different skin disorders. Also, ongoing clinical trials on ECM-targeted therapies are discussed together with future opportunities that may open new avenues for treating ECM-associated skin diseases.
Collapse
Affiliation(s)
- M D Malta
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - M T Cerqueira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - A P Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017 Guimarães, Portugal.
| |
Collapse
|
9
|
An Update on the Clinical Efficacy and Safety of Collagen Injectables for Aesthetic and Regenerative Medicine Applications. Polymers (Basel) 2023; 15:polym15041020. [PMID: 36850304 PMCID: PMC9963981 DOI: 10.3390/polym15041020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Soft tissues diseases significantly affect patients quality of life and usually require targeted, costly and sometimes constant interventions. With the average lifetime increase, a proportional increase of age-related soft tissues diseases has been witnessed. Due to this, the last two decades have seen a tremendous demand for minimally invasive one-step resolutive procedures. Intensive scientific and industrial research has led to the recognition of injectable formulations as a new advantageous approach in the management of complex diseases that are challenging to treat with conventional strategies. Among them, collagen-based products are revealed to be one of the most promising among bioactive biomaterials-based formulations. Collagen is the most abundant structural protein of vertebrate connective tissues and, because of its structural and non-structural role, is one of the most widely used multifunctional biomaterials in the health-related sectors, including medical care and cosmetics. Indeed, collagen-based formulations are historically considered as the "gold standard" and from 1981 have been paving the way for the development of a new generation of fillers. A huge number of collagen-based injectable products have been approved worldwide for clinical use and have routinely been introduced in many clinical settings for both aesthetic and regenerative surgery. In this context, this review article aims to be an update on the clinical outcomes of approved collagen-based injectables for both aesthetic and regenerative medicine of the last 20 years with an in-depth focus on their safety and effectiveness for the treatment of diseases of the integumental, gastrointestinal, musculoskeletal, and urogenital apparatus.
Collapse
|
10
|
Anzawa R, Shiratsuchi E, Miyanari K, Chick CN, Mikagi A, Yamada M, Usuki T. LC–MS/MS analysis of desmosine and isodesmosine in skipjack tuna “Katsuo” elastin. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Investigating the histological and structural properties of tendon gel as an artificial biomaterial using the film model method in rabbits. J Exp Orthop 2022; 9:1. [PMID: 34978637 PMCID: PMC8724385 DOI: 10.1186/s40634-021-00434-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose This study aimed to evaluate the properties of tendon gel by investigating the histological and structural differences among tendon gels under different preservation periods using a rabbit model. Methods Forty mature female rabbits were divided into four groups, each containing ten rabbits, on the basis of in-vivo preservation periods of tendon gels (3, 5, 10, and 15 days). We created the Achilles tendon rupture models using the film model method to obtain tendon gels. Tensile stress was applied to the tendon gel to promote maturation. Histological and structural evaluations of the tendon gel were performed before and after applying the tensile force, and the results obtained from the four groups were compared. Results Although the day-3 and day-5 tendon gels before applying tensile stress were histologically more immature than the day-10 and day-15 gels, type I collagen fibers equivalent to those of normal tendons were observed in all groups after the tensile process. Based on the surface and molecular structural evaluations, the day-3 tendon gels after the tensile process were molecularly cross-linked, and thick collagen fibers similar to those present in normal tendons were observed. Structural maturation observed in the day-3 tendon gels caused by traction was hardly observed in the day-5, -10, and -15 tendon gels. Conclusions The day-3 tendon gel had the highest regenerative potential to become a normal tendon by applying a traction force. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-021-00434-y.
Collapse
|
12
|
Han Y, Hu J, Sun G. Recent advances in skin collagen: functionality and non-medical applications. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00046-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
During nature evolution process, living organisms have gradually adapted to the environment and been adept in synthesizing high performance structural materials at mild conditions by using fairly simple building elements. The skin, as the largest organ of animals, is such a representative example. Conferred by its intricate organization where collagen fibers are arranged in a randomly interwoven network, skin collagen (SC), defined as a biomass derived from skin by removing non-collagen components displays remarkable performance with combinations of mechanical properties, chemical-reactivity and biocompatibility, which far surpasses those of synthetic materials. At present, the application of SC in medical field has been largely studied, and there have been many reviews summarizing these efforts. However, the generalized view on the aspects of SC as smart materials in non-medical fields is still lacking, although SC has shown great potential in terms of its intrinsic properties and functionality. Hence, this review will provide a comprehensive summary that integrated the recent advances in SC, including its preparation method, structure, reactivity, and functionality, as well as applications, particularly in the promising area of smart materials.
Graphical abstract
Collapse
|
13
|
Dyment NA, Barrett JG, Awad H, Bautista CA, Banes A, Butler DL. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res 2020; 38:2318-2330. [PMID: 32579266 PMCID: PMC7722018 DOI: 10.1002/jor.24784] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Bioreactors are powerful tools with the potential to model tissue development and disease in vitro. For nearly four decades, bioreactors have been used to create tendon and ligament tissue-engineered constructs in order to define basic mechanisms of cell function, extracellular matrix deposition, tissue organization, injury, and tissue remodeling. This review provides a historical perspective of tendon and ligament bioreactors and their contributions to this advancing field. First, we demonstrate the need for bioreactors to improve understanding of tendon and ligament function and dysfunction. Next, we detail the history and evolution of bioreactor development and design from simple stretching of explants to fabrication and stimulation of two- and three-dimensional constructs. Then, we demonstrate how research using tendon and ligament bioreactors has led to pivotal basic science and tissue-engineering discoveries. Finally, we provide guidance for new basic, applied, and clinical research utilizing these valuable systems, recognizing that fundamental knowledge of cell-cell and cell-matrix interactions combined with appropriate mechanical and chemical stimulation of constructs could ultimately lead to functional tendon and ligament repairs in the coming decades.
Collapse
Affiliation(s)
- Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Jennifer G. Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia Tech, Leesburg, VA
| | - Hani Awad
- Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14627
| | | | - Albert Banes
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, NC
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC
| | - David L. Butler
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
14
|
Multimodal characterization of the bone-implant interface using Raman spectroscopy and nanoindentation. Med Eng Phys 2020; 84:60-67. [DOI: 10.1016/j.medengphy.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
15
|
Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers. Biomaterials 2020; 254:120109. [PMID: 32480093 PMCID: PMC7298615 DOI: 10.1016/j.biomaterials.2020.120109] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
Due to its ubiquity and versatility in the human body, collagen is an ideal base material for tissue-engineering constructs. Chemical crosslinking treatments allow precise control of the biochemical and mechanical properties through macromolecular modifications to the structure of collagen. In this work, three key facets regarding the collagen crosslinking process are explored. Firstly, a comparison is drawn between the carbodiimide-succinimide (EDC-NHS) system and two emerging crosslinkers utilising alternate chemistries: genipin and tissue transglutaminase (TG2). By characterising the chemical changes upon treatment, the effect of EDC-NHS, genipin and TG2 crosslinking mechanisms on the chemical structure of collagen, and thus the mechanical properties conferred to the substrate is explored. Secondly, the relative importance of mechanical and biochemical cues on cellular phenomena are investigated, including cell viability, integrin-specific attachment, spreading and proliferation. Here, we observe that for human dermal fibroblasts, long-term, stable proliferation is preconditioned by the availability of suitable binding sites, irrespective of the substrate modulus post-crosslinking. Finally, as seen in the graphical abstract we show that by choosing the appropriate crosslinker chemistries, a materials selection map can be drawn for collagen films, encompassing both a range of tensile modulus and fibroblast proliferation which can be modified independently. Thus, in addition to a range of parameters that can be modified in collagen constructs, we demonstrate a route to obtaining tunable bioactivity and mechanics in collagen constructs is uncovered, that is exclusively driven by the crosslinking process.
Collapse
|
16
|
Rennekamp B, Kutzki F, Obarska-Kosinska A, Zapp C, Gräter F. Hybrid Kinetic Monte Carlo/Molecular Dynamics Simulations of Bond Scissions in Proteins. J Chem Theory Comput 2019; 16:553-563. [DOI: 10.1021/acs.jctc.9b00786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Benedikt Rennekamp
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| | - Fabian Kutzki
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Agnieszka Obarska-Kosinska
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christopher Zapp
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Naffa R, Maidment C, Ahn M, Ingham B, Hinkley S, Norris G. Molecular and structural insights into skin collagen reveals several factors that influence its architecture. Int J Biol Macromol 2019; 128:509-520. [DOI: 10.1016/j.ijbiomac.2019.01.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
|
18
|
Ohashi Y, Nakase J, Shimozaki K, Torigoe K, Tsuchiya H. Evaluation of dynamic change in regenerated tendons in a mouse model. J Exp Orthop 2018; 5:37. [PMID: 30242576 PMCID: PMC6150864 DOI: 10.1186/s40634-018-0152-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Using the film model method, the process whereby a substance called tendon gel is secreted from transected tendon ends and changed into a tendon after application of a traction force is known. The objective of this study was to investigate the association between mechanical properties in the early stages of tendon regeneration and time by using the film model method. METHOD Adult male ddY mice, closed colony mice established and maintained in Japan, were prepared for each experimental group. The study animals were 30 mice and were divided into three groups of 10 mice each. Ten specimens of tendon gel secreted from the transected tendon ends were collected on days 10, 15, and 20 postoperatively. While a traction force of 0.00245 N was applied to these specimens, the process of tendon gel changing into a tendon was video recorded for 24 h, and the length of extension was measured over time. Regenerated tendons were stained with hematoxylin and eosin for histological examination. Healing site was studied histologically according to the our maturity score with reference to the Bonar's scale. RESULTS The day 10 specimens gradually stretched for 12 h after the start of pulling and transformed into tendons. In contrast, the day 15 and 20 specimens stretched immediately after the start of pulling and transformed into tendons. The day 10 specimens stretched significantly more than the day 15 and 20 specimens (mechanical strain; 0.43 ± 0.26%, 0.03 ± 0.02%, and 0.03 ± 0.01%, respectively)Statistically significant differences were observed in the day 10 specimens than in the day 15 and 20 specimens. (P < 0.017). Using our maturity scores, the day 15 and 20 specimens were more mature than the day 10 specimens. (1.6 ± 0.68, 3.9 ± 0.54, and 4.8 ± 0.64, respectively) Statistically significant differences were observed in the day 10 specimens than in the day 15 and 20 specimens (P < 0.017). CONCLUSION Tendon gel physiologically and histologically matures on or after day 15 and becomes stronger dynamically in mechanical strength after day 15 than after day 10.
Collapse
Affiliation(s)
- Yoshinori Ohashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Kengo Shimozaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kojun Torigoe
- Department of Rehabilitation, Fukui Health Science University Faculty of Health Science, Fukui, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
19
|
Abstract
The hierarchical structure of tendon allows for attenuation of mechanical strain down decreasing length scales. While reorganization of collagen fibers accounts for microscale strain attenuation, cross-linking between collagen molecules contributes to deformation mechanisms at the fibrillar and molecular scales. Divalent and trivalent enzymatic cross-links form during the development of collagen fibrils through the enzymatic activity of lysyl oxidase (LOX). By establishing connections between telopeptidyl and triple-helical domains of adjacent molecules within collagen fibrils, these cross-links stiffen the fibrils by resisting intermolecular sliding. Ultimately, greater enzymatic cross-linking leads to less compliant and stronger tendon as a result of stiffer fibrils. In contrast, nonenzymatic cross-links such as glucosepane and pentosidine are not produced during development but slowly accumulate through glycation of collagen. Therefore, these cross-links are only expected to be present in significant quantities in advanced age, where there has been sufficient time for glycation to occur, and in diabetes, where the presence of more free sugar in the extracellular matrix increases the rate of glycation. Unlike enzymatic cross-links, current evidence suggests that nonenzymatic cross-links are at least partially isolated to the surface of collagen fibers. As a result, glycation has been proposed to primarily impact tendon mechanics by altering molecular interactions at the fiber interface, thereby diminishing sliding between fibers. Thus, increased nonenzymatic cross-linking decreases microscale strain attenuation and the viscous response of tendon. In conclusion, enzymatic and nonenzymatic collagen cross-links have demonstrable and distinct effects on the mechanical properties of tendon across different length scales.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- a Department of Biomedical Engineering , Washington University in St. Louis , St. Louis , USA
| | - Fei Fang
- b Department of Orthopedic Surgery , Columbia University , New York , USA
| | - Spencer P Lake
- a Department of Biomedical Engineering , Washington University in St. Louis , St. Louis , USA.,c Department of Mechanical Engineering and Materials Science , Washington University in St. Louis , St. Louis , USA.,d Department of Orthopaedic Surgery , Washington University in St. Louis , St. Louis , USA
| |
Collapse
|
20
|
Collier TA, Nash A, Birch HL, de Leeuw NH. Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking. J Biomech 2017; 67:55-61. [PMID: 29254633 PMCID: PMC5773075 DOI: 10.1016/j.jbiomech.2017.11.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/15/2017] [Accepted: 11/22/2017] [Indexed: 11/26/2022]
Abstract
Non-enzymatic advanced glycation end product (AGE) cross-linking of collagen molecules has been hypothesised to result in significant changes to the mechanical properties of the connective tissues within the body, potentially resulting in a number of age related diseases. We have investigated the effect of two of these cross-links, glucosepane and DOGDIC, on the tensile and lateral moduli of the collagen molecule through the use of a steered molecular dynamics approach, using previously identified preferential formation sites for intra-molecular cross-links. Our results show that the presence of intra-molecular AGE cross-links increases the tensile and lateral Young's moduli in the low strain domain by between 3.0-8.5% and 2.9-60.3% respectively, with little effect exhibited at higher strains.
Collapse
Affiliation(s)
- T A Collier
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0632, New Zealand
| | - A Nash
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - H L Birch
- Institute of Orthopaedics and Musculoskeletal Science, UCL, RNOH Stanmore Campus, London, United Kingdom
| | - N H de Leeuw
- School of Chemistry, Cardiff University, Cardiff CF10 1DF, United Kingdom.
| |
Collapse
|
21
|
Zhao X, Long K, Liu Y, Li W, Liu S, Wang L, Ren L. To prepare the collagen-based artificial cornea with improved mechanical and biological property by ultraviolet-A/riboflavin crosslinking. J Appl Polym Sci 2017. [DOI: 10.1002/app.45226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Kai Long
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Yang Liu
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Weichang Li
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Sa Liu
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Lin Wang
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| | - Li Ren
- School of Materials Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou China
| |
Collapse
|
22
|
Dex S, Alberton P, Willkomm L, Söllradl T, Bago S, Milz S, Shakibaei M, Ignatius A, Bloch W, Clausen-Schaumann H, Shukunami C, Schieker M, Docheva D. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load. EBioMedicine 2017; 20:240-254. [PMID: 28566251 PMCID: PMC5478207 DOI: 10.1016/j.ebiom.2017.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Tendons are dense connective tissues that attach muscles to bone with an indispensable role in locomotion because of their intrinsic properties of storing and releasing muscle- generated elastic energy. Tenomodulin (Tnmd) is a well-accepted gene marker for the mature tendon/ligament lineage and its loss-of -function in mice leads to a phenotype with distinct signs of premature aging on tissue and stem/progenitor cell levels. Based on these findings, we hypothesized that Tnmd might be an important factor in the functional performance of tendons. Firstly, we revealed that Tnmd is a mechanosensitive gene and that the C-terminus of the protein co-localize with collagen I-type fibers in the extracellular matrix. Secondly, using an endurance training protocol, we compared Tnmd knockout mice with wild types and showed that Tnmd deficiency leads to significantly inferior running performance that further worsens with training. In these mice, endurance running was hindered due to abnormal response of collagen I cross-linking and proteoglycan genes leading to an inadequate collagen I fiber thickness and elasticity. In sum, our study demonstrates that Tnmd is required for proper tendon tissue adaptation to endurance running and aids in better understanding of the structural-functional relationships of tendon tissues. Tnmd is a mechanosensitive gene and its protein is co-localized with collagen I fibers in the ECM of tendons. Tnmd knockout mice fail in endurance running tests, a phenotype that worsens with training. Tnmd knockout tendons had significantly thicker and stiffer collagen I fibers and altered crosslinking gene expression.
We performed a multidisciplinary approach to decipher the role of tenomodulin, a gene marker for the mature tendon lineage, in tendon functional performance. Loss-of-function in mice led to significantly inferior endurance running and detailed analyses revealed that tenomodulin is involved in the regulation of collagen I fiber structural and biomechanical properties in response to exercise. Our study expands the current view on the complex structural-functional relationships of tendon tissues, and tenomodulin expression levels may indicate whether an individual is suitable for a certain sport.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Lena Willkomm
- Department of Molecular and Cellular Sports Medicine, German Sport University, 50933 Cologne, Germany
| | - Thomas Söllradl
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Sandra Bago
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Stefan Milz
- Department of Anatomy, Ludwig-Maximilian University (LMU), 80336 Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilian University (LMU), 80336 Munich, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sport University, 50933 Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 734-8553 Hiroshima, Japan
| | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; Novartis Institute for Biomedical Research (NIBR), Translational Medicine Musculoskeletal Disease, 4056 Basel, Switzerland
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany.
| |
Collapse
|
23
|
Zitnay JL, Li Y, Qin Z, San BH, Depalle B, Reese SP, Buehler MJ, Yu SM, Weiss JA. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat Commun 2017; 8:14913. [PMID: 28327610 PMCID: PMC5364439 DOI: 10.1038/ncomms14913] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury. Collagen denaturation is thought to occur during tissue mechanical damage, but its role in damage initiation is still unclear. Here, the authors use a collagen hybridizing peptide to provide insights into the molecular mechanisms leading to collagen unfolding during tendon mechanical stretch.
Collapse
Affiliation(s)
- Jared L Zitnay
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Boi Hoa San
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Baptiste Depalle
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Shawn P Reese
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jeffrey A Weiss
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA.,Department of Orthopedics, University of Utah, Salt Lake City, Utah 84108, USA
| |
Collapse
|
24
|
Park YM, Park JS, Lee IH, Lee JS. Effects of Human Serum on Human Corneal Epithelial Cells in Vitro. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.12.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Young Min Park
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | | | - In Ho Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, Korea
| | - Jong Soo Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
25
|
|
26
|
Kwansa AL, De Vita R, Freeman JW. Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophys Chem 2016; 214-215:1-10. [DOI: 10.1016/j.bpc.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 12/12/2022]
|
27
|
Shiratsuchi E, Nakaba M, Yamada M. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1672-7. [PMID: 25996804 DOI: 10.1002/jsfa.7270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. RESULTS Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. CONCLUSION Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions.
Collapse
Affiliation(s)
- Eri Shiratsuchi
- Hayasikane Sangyo Co. Ltd, 2-4-8 Yamato-machi, Shimonoseki, Yamaguchi, 750-8608, Japan
| | - Misako Nakaba
- Hayasikane Sangyo Co. Ltd, 2-4-8 Yamato-machi, Shimonoseki, Yamaguchi, 750-8608, Japan
| | - Michio Yamada
- Hayasikane Sangyo Co. Ltd, 2-4-8 Yamato-machi, Shimonoseki, Yamaguchi, 750-8608, Japan
| |
Collapse
|
28
|
Khandaker MSK, Dudek DM, Beers EP, Dillard DA, Bevan DR. Molecular modeling of the elastomeric properties of repeating units and building blocks of resilin, a disordered elastic protein. J Mech Behav Biomed Mater 2016; 61:110-121. [PMID: 26851528 DOI: 10.1016/j.jmbbm.2016.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 11/24/2022]
Abstract
The mechanisms responsible for the properties of disordered elastomeric proteins are not well known. To better understand the relationship between elastomeric behavior and amino acid sequence, we investigated resilin, a disordered rubber-like protein, found in specialized regions of the cuticle of insects. Resilin of Drosophila melanogaster contains Gly-rich repetitive motifs comprised of the amino acids, PSSSYGAPGGGNGGR, which confer elastic properties to resilin. The repetitive motifs of insect resilin can be divided into smaller partially conserved building blocks: PSS, SYGAP, GGGN and GGR. Using molecular dynamics (MD) simulations, we studied the relative roles of SYGAP, and its less common variants SYSAP and TYGAP, on the elastomeric properties of resilin. Results showed that SYGAP adopts a bent structure that is one-half to one-third the end-to-end length of the other motifs having an equal number of amino acids but containing SYSAP or TYGAP substituted for SYGAP. The bent structure of SYGAP forms due to conformational freedom of glycine, and hydrogen bonding within the motif apparently plays a role in maintaining this conformation. These structural features of SYGAP result in higher extensibility compared to other motifs, which may contribute to elastic properties at the macroscopic level. Overall, the results are consistent with a role for the SYGAP building block in the elastomeric properties of these disordered proteins. What we learned from simulating the repetitive motifs of resilin may be applicable to the biology and mechanics of other elastomeric biomaterials, and may provide us the deeper understanding of their unique properties.
Collapse
Affiliation(s)
- Md Shahriar K Khandaker
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States.
| | - Daniel M Dudek
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, VA, United States
| | - Eric P Beers
- Horticulture Department, Virginia Polytechnic Institute and State University, United States.
| | - David A Dillard
- Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, United States.
| | - David R Bevan
- Biochemistry Department, Virginia Polytechnic Institute and State University, United States.
| |
Collapse
|
29
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
30
|
GC JB, Gerstman BS, Chapagain PP. The Role of the Interdomain Interactions on RfaH Dynamics and Conformational Transformation. J Phys Chem B 2015; 119:12750-9. [DOI: 10.1021/acs.jpcb.5b05681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeevan B. GC
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Bernard S. Gerstman
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
31
|
|
32
|
Frenay ARS, Yazdani S, Boersema M, van der Graaf AM, Waanders F, van den Born J, Navis GJ, van Goor H. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS One 2015; 10:e0129732. [PMID: 26061812 PMCID: PMC4464893 DOI: 10.1371/journal.pone.0129732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/12/2015] [Indexed: 01/13/2023] Open
Abstract
Some diseases associated with a temporary deterioration in kidney function and/or development of proteinuria show an apparently complete functional remission once the initiating trigger is removed. While it was earlier thought that a transient impairment of kidney function is harmless, accumulating evidence now suggests that these patients are more prone to developing renal failure later in life. We therefore sought to investigate to what extent renal functional changes, inflammation and collagen deposition are reversible after cessation of disease induction, potentially explaining residual sensitivity to damage. Using a rat model of Angiotensin II (Ang II)-induced hypertensive renal disease we show the development of severe hypertension (212 ± 10.43 vs. 146 ± 1.4 mmHg, p<0.001) and proteinuria (51.4 ± 6.3 vs. 14.7 ± 2.0 mg/24h, p<0.01) with declined creatinine clearance (2.0 ± 0.5 vs. 4.9 ± 0.6 mL/min, p<0.001) to occur after 3 weeks of Ang II infusion. At the structural level, Ang II infusion resulted in interstitial inflammation (18.8 ± 4.8 vs. 3.6 ± 0.5 number of macrophages, p<0.001), renal interstitial collagen deposition and lymphangiogenesis (4.1 ± 0.4 vs. 2.2 ± 0.4 number of lymph vessels, p<0.01). Eight weeks after cessation of Ang II, all clinical parameters, pre-fibrotic changes such as myofibroblast transformation and increase in lymph vessel number (lymphangiogenesis) returned to control values. However, glomerular desmin expression, glomerular and periglomerular macrophages and interstitial collagens remained elevated. These dormant abnormalities indicate that after transient renal function decline, inflammation and collagen deposition may persist despite normalization of the initiating pathophysiological stimulus perhaps rendering the kidney more vulnerable to further damage.
Collapse
Affiliation(s)
- Anne-Roos S. Frenay
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Saleh Yazdani
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Miriam Boersema
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Anne Marijn van der Graaf
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Femke Waanders
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Gerjan J. Navis
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
33
|
Oechsle AM, Wittmann X, Gibis M, Kohlus R, Weiss J. Collagen entanglement influenced by the addition of acids. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|