1
|
Hartmann HA, Loberg MA, Xu GJ, Schwarzkopf AC, Chen SC, Phifer CJ, Caroland K, Chen HC, Diaz D, Tigue ML, Hesterberg AB, Gallant JN, Shaddy SM, Sheng Q, Netterville JL, Rohde SL, Solórzano CC, Bischoff LA, Baregamian N, Hurley PJ, Murphy BA, Choe JH, Huang EC, Ye F, Lee E, Weiss VL. Tenascin-C Potentiates Wnt Signaling in Thyroid Cancer. Endocrinology 2025; 166:bqaf030. [PMID: 39951495 PMCID: PMC11843548 DOI: 10.1210/endocr/bqaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025]
Abstract
Tenascin-C (TNC) is a secreted extracellular matrix protein that is highly expressed during embryonic development and re-expressed during wound healing, inflammation, and neoplasia. Studies in developmental models suggest that TNC may regulate the Wnt signaling pathway. Our laboratory has shown high levels of Wnt signaling and TNC expression in anaplastic thyroid cancer (ATC), a highly lethal cancer with an abysmal approximately 3- to 5-month median survival. Here, we investigated the role of TNC in facilitating ligand-dependent Wnt signaling in thyroid cancer. We used bulk RNA-sequencing from 3 independent multi-institutional thyroid cancer patient cohorts. TNC expression was spatially localized in patient tumors with RNA in situ hybridization. The role of TNC was investigated in vitro using Wnt reporter assays and in vivo with a NOD.PrkdcscidIl2rg-/- mouse ATC xenograft tumor model. TNC expression was associated with aggressive thyroid cancer behavior, including anaplastic histology, extrathyroidal extension, and metastasis. Spatial localization of TNC in patient tissue demonstrated a dramatic increase in expression within cancer cells along the invasive edge, adjacent to Wnt ligand-producing fibroblasts. TNC expression was also increased in areas of intravascular invasion. In vitro, TNC bound Wnt ligands and potentiated Wnt signaling. Finally, in an ATC mouse model, TNC increased Wnt signaling, tumor burden, invasion, and metastasis. Altogether, TNC potentiated ligand-driven Wnt signaling and promotes cancer cell invasion and metastasis in a mouse model of thyroid cancer. Understanding the role of TNC and its interaction with Wnt ligands could lead to the development of novel biomarkers and targeted therapeutics for thyroid cancer.
Collapse
Affiliation(s)
- Heather A Hartmann
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew A Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - George J Xu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna C Schwarzkopf
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Courtney J Phifer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kailey Caroland
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Diana Diaz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan L Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amanda B Hesterberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jean-Nicolas Gallant
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sophia M Shaddy
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James L Netterville
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah L Rohde
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carmen C Solórzano
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lindsay A Bischoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Naira Baregamian
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula J Hurley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Urology, Vanderbilt University, Nashville, TN 37232, USA
| | - Barbara A Murphy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer H Choe
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric C Huang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Otolaryngology—Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Hartmann HA, Loberg MA, Xu GJ, Schwarzkopf AC, Chen SC, Phifer CJ, Caroland K, Chen HC, Diaz D, Tigue ML, Hesterberg AB, Gallant JN, Shaddy SM, Sheng Q, Netterville JL, Rohde SL, Solórzano CC, Bischoff LA, Baregamian N, Hurley PJ, Murphy BA, Choe JH, Huang EC, Ye F, Lee E, Weiss VL. Tenascin-C potentiates Wnt signaling in thyroid cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621959. [PMID: 39574628 PMCID: PMC11580875 DOI: 10.1101/2024.11.04.621959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Tenascin-C (TNC) is a secreted extracellular matrix protein that is highly expressed during embryonic development and re-expressed during wound healing, inflammation, and neoplasia. Studies in developmental models suggest that TNC may regulate the Wnt signaling pathway. Our lab has shown high levels of Wnt signaling and TNC expression in anaplastic thyroid cancer (ATC), a highly lethal cancer with an abysmal ~3-5 month median survival. Here, we investigated the role of TNC in facilitating ligand-dependent Wnt signaling in thyroid cancer. We utilized bulk RNA-sequencing from three independent multi-institutional thyroid cancer patient cohorts. TNC expression was spatially localized in patient tumors with RNA in situ hybridization. The role of TNC was investigated in vitro using Wnt reporter assays and in vivo with a NOD.PrkdcscidIl2rg-/- mouse ATC xenograft tumor model. TNC expression was associated with aggressive thyroid cancer behavior, including anaplastic histology, extrathyroidal extension, and metastasis. Spatial localization of TNC in patient tissue demonstrated a dramatic increase in expression within cancer cells along the invasive edge, adjacent to Wnt ligand-producing fibroblasts. TNC expression was also increased in areas of intravascular invasion. In vitro, TNC bound Wnt ligands and potentiated Wnt signaling. Finally, in an ATC mouse model, TNC increased Wnt signaling, tumor burden, invasion, and metastasis. Altogether, TNC potentiated ligand driven Wnt signaling and promotes cancer cell invasion and metastasis in a mouse model of thyroid cancer. Understanding the role of TNC and its interaction with Wnt ligands could lead to the development of novel biomarkers and targeted therapeutics for thyroid cancer.
Collapse
Affiliation(s)
- Heather A Hartmann
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew A Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - George J Xu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna C Schwarzkopf
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Courtney J Phifer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kailey Caroland
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Diana Diaz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan L Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amanda B Hesterberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232, USA
| | - Jean-Nicolas Gallant
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sophia M Shaddy
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James L Netterville
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah L Rohde
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carmen C Solórzano
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lindsay A Bischoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232, USA
| | - Naira Baregamian
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paula J Hurley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232, USA
- Department of Urology, Vanderbilt University, Nashville, TN 37232, USA
| | - Barbara A Murphy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232, USA
| | - Jennifer H Choe
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232, USA
| | - Eric C Huang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol 2024; 12:1359585. [PMID: 38572486 PMCID: PMC10987781 DOI: 10.3389/fcell.2024.1359585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Adult stem cells play a critical role in maintaining tissue homeostasis and promoting longevity. The intricate organization and presence of common markers among adult epithelial stem cells in the intestine, lung, and skin serve as hallmarks of these cells. The specific location pattern of these cells within their respective organs highlights the significance of the niche in which they reside. The extracellular matrix (ECM) not only provides physical support but also acts as a reservoir for various biochemical and biophysical signals. We will consider differences in proliferation, repair, and regenerative capacities of the three epithelia and review how environmental cues emerging from the niche regulate cell fate. These cues are transduced via mechanosignaling, regulating gene expression, and bring us to the concept of the fate scaffold. Understanding both the analogies and discrepancies in the mechanisms that govern stem cell fate in various organs can offer valuable insights for rejuvenation therapy and tissue engineering.
Collapse
Affiliation(s)
- Soline Estrach
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| | | | - Chloé C. Féral
- INSERM, CNRS, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
4
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Pang X, Hou X, Hu C, Lu S, Gan H, Yang H, Xiang S, Zhou J, Gao H, Chen S. Tenascin-C promotes the proliferation and fibrosis of mesangial cells in diabetic nephropathy through the β-catenin pathway. Int Urol Nephrol 2023; 55:2507-2516. [PMID: 36964321 DOI: 10.1007/s11255-023-03547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To mechanistically assess the involvement of tenascin-C (TNC) in diabetic nephropathy (DN). METHODS Renal specimens from DN patients were histopathologically examined, and their TNC expression patterns were evaluated via immunohistochemistry. Additionally, the hereditarily diabetic C57BL/KsJ db/db mice were induced to develop DN via adaptive feeding, and then their renal levels of TNC and β-catenin were assessed via western blotting and immunohistochemistry. Furthermore, the TNC and β-catenin levels in primary rat mesangial cells (RMCs) cultured with high glucose levels were assessed via western blotting. In parallel, RMCs cultured with TNC in the presence or absence of the β-catenin blocker ICG-001 were analyzed for their fibronectin and collagen I levels via immunostaining, and for their fibronectin, α-SMA, vimentin, PDGFR-β, PCNA, and β-catenin levels via western blotting. RESULTS The TNC levels in the specimens were associated with the pathological classification. In these DN specimens, TNC protein was highly detected in the MCs and slightly in the tubulointerstitium. Renal TNC (P < 0.05) and β-catenin (P < 0.001) were upregulated in db/db vs. db/m mice. High-glucose treatment upregulated TNC (P < 0.01) and β-catenin (P < 0.05) in RMCs. TNC treatment upregulated fibronectin (P < 0.05), α-SMA (P < 0.01), vimentin (P < 0.05), PCNA (P < 0.05), and β-catenin (P < 0.05) in RMCs, as assessed via western blotting. Immunohistochemical analysis confirmed the fibronectin upregulation and showed collagen I upregulation. Western-blot results also showed that levels of fibronectin (P < 0.001), α-SMA (P < 0.01), vimentin (P < 0.001), PCNA (P < 0.05), PDGFR-β (P < 0.05), and β-catenin (P < 0.01) were lower in RMCs co-treated with TNC and ICG-001 than in TNC-treated cells. Immunofluorescence analysis confirmed the decreased fibronectin level and showed that the collagen I level was also decreased by ICG-001. CONCLUSION TNC is upregulated in DN and induces MC proliferation and fibrosis through the β-catenin pathway.
Collapse
Affiliation(s)
- Xinxin Pang
- Division of Nephrology, Henan Provincial Hospital of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaotao Hou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Renal Pathology, King Medical Diagnostics Center, Guangzhou, China
| | - Chengxiao Hu
- Division of Nephrology, Shenzhen Hospital, Hong Kong University, Shenzhen, China
| | - Shilong Lu
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China
| | - Huifang Gan
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China
| | - Huifei Yang
- Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Shaowei Xiang
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongjun Gao
- Division of Urology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China.
| | - Shuangqin Chen
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China.
| |
Collapse
|
6
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
7
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
8
|
Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023; 354:726-745. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The development of new advanced constructs resembling structural and functional properties of human organs and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bioprinting represent valuable tools for this purpose. This review will describe how morphological and biochemical properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as "inks" in the 3D printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with signaling molecules to develop bio-responsive and bio-instructive ECM mimics.
Collapse
Affiliation(s)
- Francesca Cadamuro
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
9
|
Abstract
Tenascin-C is a large extracellular matrix glycoprotein with complex, not yet fully unveiled roles. Its context- and structure-dependent modus operandi renders tenascin-C a puzzling protein. Since its discovery ∼40 years ago, research into tenascin-C biology continues to reveal novel functions, the most recent of all being its immunomodulatory activity, especially its role in infection, which is just now beginning to emerge. Here, we explore the role of tenascin-C in the immune response to viruses, including SARS-CoV-2 and HIV-1. Recently, tenascin-C has emerged as a biomarker of disease severity during COVID-19 and other viral infections, and we highlight relevant RNA sequencing and proteomic analyses that suggest a correlation between tenascin-C levels and disease severity. Finally, we ask what the function of this protein during viral replication is and propose tenascin-C as an intercellular signal of inflammation shuttled to distal sites via exosomes, a player in the repair and remodeling of infected and damaged tissues during severe infectious disease, as well as a ligand for specific pathogens with distinct implications for the host.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- 1QBI Coronavirus Research Group, San Francisco, California,2Quantitative Biosciences Institute, University of California, San Francisco, California,3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Anna M. Piccinini
- 4School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
Yilmaz A, Loustau T, Salomé N, Poilil Surendran S, Li C, Tucker RP, Izzi V, Lamba R, Koch M, Orend G. Advances on the roles of tenascin-C in cancer. J Cell Sci 2022; 135:276631. [PMID: 36102918 PMCID: PMC9584351 DOI: 10.1242/jcs.260244] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The roles of the extracellular matrix molecule tenascin-C (TNC) in health and disease have been extensively reviewed since its discovery over 40 years ago. Here, we will describe recent insights into the roles of TNC in tumorigenesis, angiogenesis, immunity and metastasis. In addition to high levels of expression in tumors, and during chronic inflammation, and bacterial and viral infection, TNC is also expressed in lymphoid organs. This supports potential roles for TNC in immunity control. Advances using murine models with engineered TNC levels were instrumental in the discovery of important functions of TNC as a danger-associated molecular pattern (DAMP) molecule in tissue repair and revealed multiple TNC actions in tumor progression. TNC acts through distinct mechanisms on many different cell types with immune cells coming into focus as important targets of TNC in cancer. We will describe how this knowledge could be exploited for cancer disease management, in particular for immune (checkpoint) therapies.
Collapse
Affiliation(s)
- Alev Yilmaz
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Thomas Loustau
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Nathalie Salomé
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Suchithra Poilil Surendran
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Chengbei Li
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Richard P. Tucker
- University of California at Davis 4 Department of Cell Biology and Human Anatomy , , 95616 Davis, CA , USA
| | - Valerio Izzi
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Rijuta Lamba
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Research, Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC) 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
- University Hospital Cologne, University of Cologne 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| |
Collapse
|
11
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
12
|
Tucker RP, Degen M. Revisiting the Tenascins: Exploitable as Cancer Targets? Front Oncol 2022; 12:908247. [PMID: 35785162 PMCID: PMC9248440 DOI: 10.3389/fonc.2022.908247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
For their full manifestation, tumors require support from the surrounding tumor microenvironment (TME), which includes a specific extracellular matrix (ECM), vasculature, and a variety of non-malignant host cells. Together, these components form a tumor-permissive niche that significantly differs from physiological conditions. While the TME helps to promote tumor progression, its special composition also provides potential targets for anti-cancer therapy. Targeting tumor-specific ECM molecules and stromal cells or disrupting aberrant mesenchyme-cancer communications might normalize the TME and improve cancer treatment outcome. The tenascins are a family of large, multifunctional extracellular glycoproteins consisting of four members. Although each have been described to be expressed in the ECM surrounding cancer cells, tenascin-C and tenascin-W are currently the most promising candidates for exploitability and clinical use as they are highly expressed in various tumor stroma with relatively low abundance in healthy tissues. Here, we review what is known about expression of all four tenascin family members in tumors, followed by a more thorough discussion on tenascin-C and tenascin-W focusing on their oncogenic functions and their potential as diagnostic and/or targetable molecules for anti-cancer treatment purposes.
Collapse
Affiliation(s)
- Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- *Correspondence: Martin Degen,
| |
Collapse
|
13
|
Gao B, Jiang B, Xing W, Xie Z, Luo Z, Zou W. Discovery and Application of Postnatal Nucleus Pulposus Progenitors Essential for Intervertebral Disc Homeostasis and Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104888. [PMID: 35195356 PMCID: PMC9069184 DOI: 10.1002/advs.202104888] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/16/2022] [Indexed: 05/15/2023]
Abstract
Intervertebral disc degeneration (IDD) results from the dysfunction of nucleus pulposus (NP) cells and the exhaustion of NP progenitors (ProNPs). The cellular applications of NP cells during IDD are currently limited due to the lack of in vivo studies showing whether NP cells are heterogeneous and contain ProNPs throughout postnatal stages. In this study, single-cell RNA sequencing of purified NP cells is used to map four molecularly defined populations and urotensin II receptor (UTS2R)-expressing postnatal ProNPs is identified, which are markedly exhausted during IDD, in mouse and human specimens. The lineage tracing shows that UTS2R+ ProNPs preferentially resides in the NP periphery with its niche factor tenascin-C and give rise to functional NP cells. It is also demonstrated that transplanting UTS2R+ ProNPs with tenascin-C into injured intervertebral discs attenuate the progression of IDD. The study provides a novel NP cell atlas, identified resident ProNPs with regenerative potential, and revealed promising diagnostic and therapeutic targets for IDD.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Bo Jiang
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Wenhui Xing
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zaiqi Xie
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Zhuojing Luo
- Institute of Orthopaedic SurgeryXijing HospitalAir Force Military Medical UniversityXi'anShaanxiChina
| | - Weiguo Zou
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
14
|
Geleta B, Tout FS, Lim SC, Sahni S, Jansson PJ, Apte MV, Richardson DR, Kovačević Ž. Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation of the metastasis suppressor NDRG1. J Biol Chem 2022; 298:101608. [PMID: 35065073 PMCID: PMC8881656 DOI: 10.1016/j.jbc.2022.101608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
A major barrier to successful pancreatic cancer (PC) treatment is the surrounding stroma, which secretes growth factors/cytokines that promote PC progression. Wnt and tenascin C (TnC) are key ligands secreted by stromal pancreatic stellate cells (PSCs) that then act on PC cells in a paracrine manner to activate the oncogenic β-catenin and YAP/TAZ signaling pathways. Therefore, therapies targeting oncogenic Wnt/TnC cross talk between PC cells and PSCs constitute a promising new therapeutic approach for PC treatment. The metastasis suppressor N-myc downstream-regulated gene-1 (NDRG1) inhibits tumor progression and metastasis in numerous cancers, including PC. We demonstrate herein that targeting NDRG1 using the clinically trialed anticancer agent di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) inhibited Wnt/TnC-mediated interactions between PC cells and the surrounding PSCs. Mechanistically, NDRG1 and DpC markedly inhibit secretion of Wnt3a and TnC by PSCs, while also attenuating Wnt/β-catenin and YAP/TAZ activation and downstream signaling in PC cells. This antioncogenic activity was mediated by direct inhibition of β-catenin and YAP/TAZ nuclear localization and by increasing the Wnt inhibitor, DKK1. Expression of NDRG1 also inhibited transforming growth factor (TGF)-β secretion by PC cells, a key mechanism by which PC cells activate PSCs. Using an in vivo orthotopic PC mouse model, we show DpC downregulated β-catenin, TnC, and YAP/TAZ, while potently increasing NDRG1 expression in PC tumors. We conclude that NDRG1 and DpC inhibit Wnt/TnC-mediated interactions between PC cells and PSCs. These results further illuminate the antioncogenic mechanism of NDRG1 and the potential of targeting this metastasis suppressor to overcome the oncogenic effects of the PC-PSC interaction.
Collapse
Affiliation(s)
- Bekesho Geleta
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Faten S Tout
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Department of Medical Laboratory Science, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Syer Choon Lim
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; Cancer Drug Resistance & Stem Cell Program, Faculty of Medicine and Health, School of Medical Science, University of Sydney, Sydney, New South Wales, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, UNSW Sydney, Sydney, New South Wales, Australia; Pancreatic Research Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Žaklina Kovačević
- Cancer Metastasis and Tumor Microenvironment Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia; Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Tucić M, Stamenković V, Andjus P. The Extracellular Matrix Glycoprotein Tenascin C and Adult Neurogenesis. Front Cell Dev Biol 2021; 9:674199. [PMID: 33996833 PMCID: PMC8117239 DOI: 10.3389/fcell.2021.674199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tenascin C (TnC) is a glycoprotein highly expressed in the extracellular matrix (ECM) during development and in the adult central nervous system (CNS) in regions of active neurogenesis, where neuron development is a tightly regulated process orchestrated by extracellular matrix components. In addition, newborn cells also communicate with glial cells, astrocytes and microglia, indicating the importance of signal integration in adult neurogenesis. Although TnC has been recognized as an important molecule in the regulation of cell proliferation and migration, complete regulatory pathways still need to be elucidated. In this review we discuss the formation of new neurons in the adult hippocampus and the olfactory system with specific reference to TnC and its regulating functions in this process. Better understanding of the ECM signaling in the niche of the CNS will have significant implications for regenerative therapies.
Collapse
Affiliation(s)
- Milena Tucić
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenković
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Imhof T, Balic A, Heilig J, Chiquet-Ehrismann R, Chiquet M, Niehoff A, Brachvogel B, Thesleff I, Koch M. Pivotal Role of Tenascin-W (-N) in Postnatal Incisor Growth and Periodontal Ligament Remodeling. Front Immunol 2021; 11:608223. [PMID: 33552067 PMCID: PMC7862723 DOI: 10.3389/fimmu.2020.608223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
The continuously growing mouse incisor provides a fascinating model for studying stem cell regulation and organ renewal. In the incisor, epithelial and mesenchymal stem cells assure lifelong tooth growth. The epithelial stem cells reside in a niche known as the cervical loop. Mesenchymal stem cells are located in the nearby apical neurovascular bundle and in the neural plexus. So far, little is known about extracellular cues that are controlling incisor stem cell renewal and guidance. The extracellular matrix protein tenascin-W, also known as tenascin-N (TNN), is expressed in the mesenchyme of the pulp and of the periodontal ligament of the incisor, and is closely associated with collagen 3 fibers. Here, we report for the first time the phenotype of tenascin-W/TNN deficient mice, which in a C57BL/6N background exhibit a reduced body weight and lifespan. We found major defects in the alveolar bone and periodontal ligament of the growing rodent incisors, whereas molars were not affected. The alveolar bone around the incisor was replaced by a dense scar-like connective tissue, enriched with newly formed nerve fibers likely leading to periodontal pain, less food intake and reduced body weight. Using soft food to reduce mechanical load on the incisor partially rescued the phenotype. In situ hybridization and Gli1 reporter mouse experiments revealed decreased hedgehog signaling in the incisor mesenchymal stem cell compartment, which coordinates the development of mesenchymal stem cell niche. These results indicate that TNN deficiency in mice affects periodontal remodeling and increases nerve fiber branching. Through periodontal pain the food intake is reduced and the incisor renewal and the neurovascular sonic hedgehog secretion rate are reduced. In conclusion, tenascin-W/TNN seems to have a primary function in rapid periodontal tissue remodeling and a secondary function in mechanosensation.
Collapse
Affiliation(s)
- Thomas Imhof
- Faculty of Medicine and University Hospital Cologne, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anamaria Balic
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juliane Heilig
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Res. Foundation, Basel, Switzerland
| | - Matthias Chiquet
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anja Niehoff
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Irma Thesleff
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Manuel Koch
- Faculty of Medicine and University Hospital Cologne, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Extracellular Matrix in Calcific Aortic Valve Disease: Architecture, Dynamic and Perspectives. Int J Mol Sci 2021; 22:ijms22020913. [PMID: 33477599 PMCID: PMC7831300 DOI: 10.3390/ijms22020913] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common valvular heart disease in developed countries and in the ageing population. It is strongly correlated to median age, affecting up to 13% of the population over the age of 65. Pathophysiological analysis indicates CAVD as a result of an active and degenerative disease, starting with sclerosis and chronic inflammation and then leaflet calcification, which ultimately can account for aortic stenosis. Although CAVD has been firstly recognized as a passive event mostly resulting from a degenerative aging process, much evidences suggests that calcification arises from different active processes, involving both aortic valve-resident cells (valve endothelial cells, valve interstitial cells, mesenchymal stem cells, innate immunity cells) and circulating cells (circulating mesenchymal cells, immunity cells). Moreover, a role for the cell-derived "matrix vesicles" and extracellular matrix (ECM) components has also been recognized. The aim of this work is to review the cellular and molecular alterations occurring in aortic valve during CAVD pathogenesis, focusing on the role of ECM in the natural course of the disease.
Collapse
|
18
|
Yamada K, Hori Y, Inoue S, Yamamoto Y, Iso K, Kamiyama H, Yamaguchi A, Kimura T, Uesugi M, Ito J, Matsuki M, Nakamoto K, Harada H, Yoneda N, Takemura A, Kushida I, Wakayama N, Kubara K, Kato Y, Semba T, Yokoi A, Matsukura M, Odagami T, Iwata M, Tsuruoka A, Uenaka T, Matsui J, Matsushima T, Nomoto K, Kouji H, Owa T, Funahashi Y, Ozawa Y. E7386, a Selective Inhibitor of the Interaction between β-Catenin and CBP, Exerts Antitumor Activity in Tumor Models with Activated Canonical Wnt Signaling. Cancer Res 2021; 81:1052-1062. [PMID: 33408116 DOI: 10.1158/0008-5472.can-20-0782] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/29/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
The Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and the development of multiple types of cancer, and its aberrant activation provides cancer cells with escape mechanisms from immune checkpoint inhibitors. E7386, an orally active selective inhibitor of the interaction between β-catenin and CREB binding protein, which is part of the Wnt/β-catenin signaling pathway, disrupts the Wnt/β-catenin signaling pathway in HEK293 and adenomatous polyposis coli (APC)-mutated human gastric cancer ECC10 cells. It also inhibited tumor growth in an ECC10 xenograft model and suppressed polyp formation in the intestinal tract of ApcMin /+ mice, in which mutation of Apc activates the Wnt/β-catenin signaling pathway. E7386 demonstrated antitumor activity against mouse mammary tumors developed in mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice. Gene expression profiling using RNA sequencing data of MMTV-Wnt1 tumor tissue from mice treated with E7386 showed that E7386 downregulated genes in the hypoxia signaling pathway and immune responses related to the CCL2, and IHC analysis showed that E7386 induced infiltration of CD8+ cells into tumor tissues. Furthermore, E7386 showed synergistic antitumor activity against MMTV-Wnt1 tumor in combination with anti-PD-1 antibody. In conclusion, E7386 demonstrates clear antitumor activity via modulation of the Wnt/β-catenin signaling pathway and alteration of the tumor and immune microenvironments, and its antitumor activity can be enhanced in combination with anti-PD-1 antibody. SIGNIFICANCE: These findings demonstrate that the novel anticancer agent, E7386, modulates Wnt/β-catenin signaling, altering the tumor immune microenvironment and exhibiting synergistic antitumor activity in combination with anti-PD-1 antibody.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yusaku Hori
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Satoshi Inoue
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yuji Yamamoto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kentaro Iso
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hiroshi Kamiyama
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Atsumi Yamaguchi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takayuki Kimura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Mai Uesugi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Junichi Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Masahiro Matsuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kazutaka Nakamoto
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hitoshi Harada
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naoki Yoneda
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Atsushi Takemura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Ikuo Kushida
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naomi Wakayama
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yu Kato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Taro Semba
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Akira Yokoi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | | | | | - Masao Iwata
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Akihiko Tsuruoka
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Toshimitsu Uenaka
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Junji Matsui
- Oncology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | | | - Kenichi Nomoto
- Oncology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | | | - Takashi Owa
- Oncology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Yasuhiro Funahashi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan.
| | - Yoichi Ozawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan.
| |
Collapse
|
19
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
20
|
Tenascin-C Function in Glioma: Immunomodulation and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:149-172. [PMID: 32845507 DOI: 10.1007/978-3-030-48457-6_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First identified in the 1980s, tenascin-C (TNC) is a multi-domain extracellular matrix glycoprotein abundantly expressed during the development of multicellular organisms. TNC level is undetectable in most adult tissues but rapidly and transiently induced by a handful of pro-inflammatory cytokines in a variety of pathological conditions including infection, inflammation, fibrosis, and wound healing. Persistent TNC expression is associated with chronic inflammation and many malignancies, including glioma. By interacting with its receptor integrin and a myriad of other binding partners, TNC elicits context- and cell type-dependent function to regulate cell adhesion, migration, proliferation, and angiogenesis. TNC operates as an endogenous activator of toll-like receptor 4 and promotes inflammatory response by inducing the expression of multiple pro-inflammatory factors in innate immune cells such as microglia and macrophages. In addition, TNC drives macrophage differentiation and polarization predominantly towards an M1-like phenotype. In contrast, TNC shows immunosuppressive function in T cells. In glioma, TNC is expressed by tumor cells and stromal cells; high expression of TNC is correlated with tumor progression and poor prognosis. Besides promoting glioma invasion and angiogenesis, TNC has been found to affect the morphology and function of tumor-associated microglia/macrophages in glioma. Clinically, TNC can serve as a biomarker for tumor progression; and TNC antibodies have been utilized as an adjuvant agent to deliver anti-tumor drugs to target glioma. A better mechanistic understanding of how TNC impacts innate and adaptive immunity during tumorigenesis and tumor progression will open new therapeutic avenues to treat brain tumors and other malignancies.
Collapse
|
21
|
Bisphenol A impaired cell adhesion by altering the expression of adhesion and cytoskeleton proteins on human podocytes. Sci Rep 2020; 10:16638. [PMID: 33024228 PMCID: PMC7538920 DOI: 10.1038/s41598-020-73636-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a chemical -xenoestrogen- used in food containers is present in the urine of almost the entire population. Recently, several extensive population studies have proven a significant association between urinary excretion of BPA and albuminuria. The alteration of glomerular podocytes or "podocytopathy" is a common event in chronic albuminuric conditions. Since many podocytes recovered from patients' urine are viable, we hypothesized that BPA could impair podocyte adhesion capabilities. Using an in vitro adhesion assay, we observed that BPA impaired podocyte adhesion, an effect that was abrogated by Tamoxifen (an estrogen receptor blocker). Genomic and proteomic analyses revealed that BPA affected the expression of several podocyte cytoskeleton and adhesion proteins. Western blot and immunocytochemistry confirmed the alteration in the protein expression of tubulin, vimentin, podocin, cofilin-1, vinculin, E-cadherin, nephrin, VCAM-1, tenascin-C, and β-catenin. Moreover, we also found that BPA, while decreased podocyte nitric oxide production, it lead to overproduction of ion superoxide. In conclusion, our data show that BPA induced a novel type of podocytopathy characterizes by an impairment of podocyte adhesion, by altering the expression of adhesion and cytoskeleton proteins. Moreover, BPA diminished production of podocyte nitric oxide and induced the overproduction of oxygen-free metabolites. These data provide a mechanism by which BPA could participate in the pathogenesis and progression of renal diseases.
Collapse
|
22
|
Mund SI, Schittny JC. Tenascin-C deficiency impairs alveolarization and microvascular maturation during postnatal lung development. J Appl Physiol (1985) 2020; 128:1287-1298. [PMID: 32078464 PMCID: PMC7272747 DOI: 10.1152/japplphysiol.00258.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
After the airways have been formed by branching morphogenesis the gas exchange area of the developing lung is enlarged by the formation of new alveolar septa (alveolarization). The septa themselves mature by a reduction of their double-layered capillary networks to single-layered ones (microvascular maturation). Alveolarization in mice is subdivided into a first phase (postnatal days 4-21, classical alveolarization), where new septa are lifted off from immature preexisting septa, and a second phase (day 14 to adulthood, continued alveolarization), where new septa are formed from mature septa. Tenascin-C (TNC) is a multidomain extracellular matrix protein contributing to organogenesis and tumorigenesis. It is highly expressed during classical alveolarization, but afterward its expression is markedly reduced. To study the effect of TNC deficiency on postnatal lung development, the formation and maturation of the alveolar septa were followed stereologically. Furthermore, the number of proliferating (Ki-67-positive) and TUNEL-positive cells was estimated. In TNC-deficient mice for both phases of alveolarization a delay and catch-up were observed. Cell proliferation was increased at days 4 and 6; at day 7, thick septa with an accumulation of capillaries and cells were observed; and the number of TUNEL-positive cells (dying cells or DNA repair) was increased at day 10. Whereas at days 15 and 21 premature microvascular maturation was detected, the microvasculature was less mature at day 60 compared with wild type. No differences were observed in adulthood. We conclude that TNC contributes to the formation of new septa, to microvascular maturation, and to cell proliferation and migration during postnatal lung development.NEW & NOTEWORTHY Previously, we showed that the extracellular matrix protein tenascin-C takes part in prenatal lung development by controlling branching morphogenesis. Now we report that tenascin-C is also important during postnatal lung development, because tenascin-C deficiency delays the formation and maturation of the alveolar septa during not only classical but also continued alveolarization. Adult lungs are indistinguishable from wild type because of a catch-up formation of new septa.
Collapse
Affiliation(s)
- Sonja I Mund
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | |
Collapse
|
23
|
Roll L, Faissner A. Tenascins in CNS lesions. Semin Cell Dev Biol 2019; 89:118-124. [DOI: 10.1016/j.semcdb.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
|
24
|
Tucker RP, Degen M. The Expression and Possible Functions of Tenascin-W During Development and Disease. Front Cell Dev Biol 2019; 7:53. [PMID: 31032255 PMCID: PMC6473177 DOI: 10.3389/fcell.2019.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 01/18/2023] Open
Abstract
Tenascins are a family of multifunctional glycoproteins found in the extracellular matrix of chordates. Two of the tenascins, tenascin-C and tenascin-W, form hexabrachions. In this review, we describe the discovery and domain architecture of tenascin-W, its evolution and patterns of expression during embryogenesis and in tumors, and its effects on cells in culture. In avian and mammalian embryos tenascin-W is primarily expressed at sites of osteogenesis, and in the adult tenascin-W is abundant in certain stem cell niches. In primary cultures of osteoblasts tenascin-W promotes cell migration, the formation of mineralized foci and increases alkaline phosphatase activity. Tenascin-W is also prominent in many solid tumors, yet it is missing from the extracellular matrix of most adult tissues. This makes it a potential candidate for use as a marker of tumor stroma and a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Chen S, Fu H, Wu S, Zhu W, Liao J, Hong X, Miao J, Luo C, Wang Y, Hou FF, Zhou L, Liu Y. Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int 2019; 95:62-74. [PMID: 30409456 PMCID: PMC6320278 DOI: 10.1016/j.kint.2018.08.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022]
Abstract
The development of acute kidney injury (AKI) is a complex process involving tubular, inflammatory, and vascular components, but less is known about the role of the interstitial microenvironment. We have previously shown that the extracellular matrix glycoprotein tenascin-C (TNC) is induced in fibrotic kidneys. In mouse models of AKI induced by ischemia-reperfusion injury (IRI) or cisplatin, TNC was induced de novo in the injured sites and localized to the renal interstitium. The circulating level of TNC protein was also elevated in AKI patients after cardiac surgery. Knockdown of TNC by shRNA in vivo aggravated AKI after ischemic or toxic injury. This effect was associated with reduced renal β-catenin expression, suggesting an impact on Wnt signaling. In vitro, TNC protected tubular epithelial cells against apoptosis and augmented Wnt1-mediated β-catenin activation. Co-immunoprecipitation revealed that TNC physically interacts with Wnt ligands. Furthermore, a TNC-enriched kidney tissue scaffold prepared from IRI mice was able to recruit and concentrate Wnt ligands from the surrounding milieu ex vivo. The ability to recruit Wnt ligands in this ex vivo model diminished after TNC depletion. These studies indicate that TNC is specifically induced at sites of injury and recruits Wnt ligands, thereby creating a favorable microenvironment for tubular repair and regeneration after AKI.
Collapse
Affiliation(s)
- Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songzhao Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjuan Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongping Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
26
|
Zuo Y, Liu Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis. Nephrology (Carlton) 2018; 23 Suppl 4:38-43. [PMID: 30298654 DOI: 10.1111/nep.13472] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 01/11/2023]
Abstract
Wnt/β-catenin is an evolutionarily conserved, developmental signalling pathway that regulates embryogenesis, injury repair and pathogenesis of human diseases. Dysregulated activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions after injury. Wnt are induced and β-catenin is activated in various models of experimental chronic kidney disease (CKD) and in human nephropathies. Recent findings indicate that pro(renin) receptor is an amplifier of Wnt/β-catenin by acting as a downstream target and an obligatory component for its signal transduction. Genetic blockade of Wnt secretion in a cell type-specific manner uncovers renal tubular epithelium as the major source of Wnt ligands in CKD. Wnt/β-catenin controls the expression of a wide variety of downstream mediators implicated in kidney fibrosis, such as fibronectin, Snail1, matrix metalloproteinase-7, hepatocyte growth factor and various components of the renin-angiotensin system. Targeted inhibition of Wnt/β-catenin is able to ameliorate kidney fibrotic lesions in pre-clinical settings. In this review, we summarize recent advances in our understanding of the regulation, signal transduction, role and mechanisms of Wnt/β-catenin signalling in the pathogenesis of kidney fibrosis. We also discuss the therapeutic potential of targeting this pathway for the treatment of fibrotic CKD.
Collapse
Affiliation(s)
- Yangyang Zuo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Marzeda AM, Midwood KS. Internal Affairs: Tenascin-C as a Clinically Relevant, Endogenous Driver of Innate Immunity. J Histochem Cytochem 2018; 66:289-304. [PMID: 29385356 PMCID: PMC5958381 DOI: 10.1369/0022155418757443] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
To protect against danger, the innate immune system must promptly and accurately sense alarm signals, and mount an appropriate response to restore homeostasis. One endogenous trigger of immunity is tenascin-C, a large hexameric protein of the extracellular matrix. Upregulated upon tissue injury and cellular stress, tenascin-C is expressed during inflammation and tissue remodeling, where it influences cellular behavior by interacting with a multitude of molecular targets, including other matrix components, cell surface proteins, and growth factors. Here, we discuss how these interactions confer upon tenascin-C distinct immunomodulatory capabilities that make this matrix molecule necessary for efficient tissue repair. We also highlight in vivo studies that provide insight into the consequences of misregulated tenascin-C expression on inflammation and fibrosis during a wide range of inflammatory diseases. Finally, we examine how its unique expression pattern and inflammatory actions make tenascin-C a viable target for clinical exploitation in both diagnostic and therapeutic arenas.
Collapse
Affiliation(s)
- Anna M Marzeda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
29
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
30
|
Goldstein NB, Koster MI, Jones KL, Gao B, Hoaglin LG, Robinson SE, Wright MJ, Birlea SI, Luman A, Lambert KA, Shellman YG, Fujita M, Robinson WA, Roop DR, Norris DA, Birlea SA. Repigmentation of Human Vitiligo Skin by NBUVB Is Controlled by Transcription of GLI1 and Activation of the β-Catenin Pathway in the Hair Follicle Bulge Stem Cells. J Invest Dermatol 2017; 138:657-668. [PMID: 29054607 DOI: 10.1016/j.jid.2017.09.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/17/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Vitiligo repigmentation is a complex process in which the melanocyte-depleted interfollicular epidermis is repopulated by melanocyte precursors from hair follicle bulge that proliferate, migrate, and differentiate into mature melanocytes on their way to the epidermis. The strongest stimulus for vitiligo repigmentation is narrow-band UVB (NBUVB), but how the hair follicle melanocyte precursors are activated by UV light has not been extensively studied. To better understand this process, we developed an application that combined laser capture microdissection and subsequent whole transcriptome RNA sequencing of hair follicle bulge melanocyte precursors and compared their gene signatures to that of regenerated mature epidermal melanocytes from NBUVB-treated vitiligo skin. Using this strategy, we found up-regulation of TNC, GJB6, and THBS1 in the hair follicle bulge melanocytes and of TYR in the epidermal melanocytes of the NBUVB-treated vitiligo skin. We validated these results by quantitative real-time-PCR using NBUVB-treated vitiligo skin and untreated normal skin. We also identified that GLI1, a candidate stem cell-associated gene, is significantly up-regulated in the melanocytes captured from NBUVB-treated vitiligo bulge compared with untreated vitiligo bulge. These signals are potential key players in the activation of bulge melanocyte precursors during vitiligo repigmentation.
Collapse
Affiliation(s)
| | - Maranke I Koster
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA
| | - Kenneth L Jones
- Department of Hematology, University of Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Bifeng Gao
- Sequencing and Microarray Core, University of Colorado, Aurora, Colorado, USA
| | - Laura G Hoaglin
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA
| | | | - Michael J Wright
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Smaranda I Birlea
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Abigail Luman
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Karoline A Lambert
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | | | - Dennis R Roop
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Stanca A Birlea
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA.
| |
Collapse
|
31
|
Graham ÉA, Mallet JF, Jambi M, Nishioka H, Homma K, Matar C. MicroRNA signature in the chemoprevention of functionally-enriched stem and progenitor pools (FESPP) by Active Hexose Correlated Compound (AHCC). Cancer Biol Ther 2017; 18:765-774. [PMID: 28886271 PMCID: PMC5678688 DOI: 10.1080/15384047.2017.1373211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Many breast cancer patients use natural compounds in their battle against breast cancer. Active Hexose Correlated Compound (AHCC®) is a cultured mushroom mycelium extract shown to favorably modulate the immune system and alleviate cancer burden. Cancer Stem cells (CSCs) are a subset of highly tumorigenic cancer cells that are thought to be responsible for recurrence. CSCs can be epigenetically regulated by microRNAs (miRNAs). We hypothesized that AHCC may influence CSCs by modulating tumor-suppressor or oncogenic miRNAs. METHODS Functionally-enriched stem and progenitor pools (FESPP) were isolated in the form of mammospheres from MDA-MB-231, MCF-7, and 4T1 cells, exposed to AHCC in both regular and primary culture from Balb/c mice, and analyzed by visual counting and flow cytometry. Cell motility was also observed in MDA-MB-231 cells. Profiling and RT-qPCR were performed to determine AHCC influence on miRNAs in MDA-MB-231 mammospheres. Additionally, Balb/c mice were orally gavaged with AHCC, and tumor growth parameters and miR-335 expression were analyzed. MDA-MB-231 cells were transfected with miR-335 and analyzed by western blot. RESULTS We demonstrated that AHCC reduced mammosphere growth in three cell lines and in primary culture, prevented cell migration, and upregulated miR-335 expression in MDA-MB-231 cells and mouse tumor samples. Among the differentially regulated miRNAs in CSCs, we focused on tumor suppressor miR-335, known to target extracellular matrix protein Tenascin C (TNC). TNC is involved in CSC immune evasion pathways. In MDA-MB-231, inhibition of miR-335 increased TNC protein expression. CONCLUSIONS These results support that AHCC limits FESPP growth, partly by targeting miRNA pathways.
Collapse
Affiliation(s)
- Émilie A. Graham
- Interdisciplinary Health Sciences, University of Ottawa, Ottawa, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Majed Jambi
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Kohei Homma
- R&D Division Amino Up Chemical Co, Ltd, Sapporo, Japan
| | - Chantal Matar
- Interdisciplinary Health Sciences, University of Ottawa, Ottawa, Canada
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Faissner A, Roll L, Theocharidis U. Tenascin-C in the matrisome of neural stem and progenitor cells. Mol Cell Neurosci 2017; 81:22-31. [DOI: 10.1016/j.mcn.2016.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023] Open
|
33
|
Villani R, Hodgson S, Legrand J, Greaney J, Wong HY, Pichol-Thievend C, Adolphe C, Wainwight B, Francois M, Khosrotehrani K. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types. Development 2017; 144:1887-1895. [DOI: 10.1242/dev.143917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022]
Abstract
SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types.
Collapse
Affiliation(s)
- Rehan Villani
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane Hospital, Herston Road, Herston, Brisbane 4029, Queensland, Australia
- The University of Queensland, UQ Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4102, Queensland, Australia
| | - Samantha Hodgson
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane Hospital, Herston Road, Herston, Brisbane 4029, Queensland, Australia
| | - Julien Legrand
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane Hospital, Herston Road, Herston, Brisbane 4029, Queensland, Australia
| | - Jessica Greaney
- The University of Queensland, UQ Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4102, Queensland, Australia
| | - Ho Yi Wong
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane Hospital, Herston Road, Herston, Brisbane 4029, Queensland, Australia
| | - Cathy Pichol-Thievend
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Brisbane 4072, Queensland, Australia
| | - Christelle Adolphe
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Brisbane 4072, Queensland, Australia
| | - Brandon Wainwight
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Brisbane 4072, Queensland, Australia
| | - Mathias Francois
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Brisbane 4072, Queensland, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane Hospital, Herston Road, Herston, Brisbane 4029, Queensland, Australia
- The University of Queensland, UQ Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4102, Queensland, Australia
| |
Collapse
|
34
|
Callejas-Valera JL, Iglesias-Bartolome R, Amornphimoltham P, Palacios-Garcia J, Martin D, Califano JA, Molinolo AA, Gutkind JS. mTOR inhibition prevents rapid-onset of carcinogen-induced malignancies in a novel inducible HPV-16 E6/E7 mouse model. Carcinogenesis 2016; 37:1014-25. [PMID: 27538837 DOI: 10.1093/carcin/bgw086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
The rising incidence of human papillomavirus (HPV)-associated malignancies, especially for oropharyngeal cancers, has highlighted the urgent need to understand how the interplay between high-risk HPV oncogenes and carcinogenic exposure results in squamous cell carcinoma (SCC) development. Here, we describe an inducible mouse model expressing high risk HPV-16 E6/E7 oncoproteins in adults, bypassing the impact of these viral genes during development. HPV-16 E6/E7 genes were targeted to the basal squamous epithelia in transgenic mice using a doxycycline inducible cytokeratin 5 promoter (cK5-rtTA) system. After doxycycline induction, both E6 and E7 were highly expressed, resulting in rapid epidermal hyperplasia with a remarkable expansion of the proliferative cell compartment to the suprabasal layers. Surprisingly, in spite of the massive growth of epithelial cells and their stem cell progenitors, HPV-E6/E7 expression was not sufficient to trigger mTOR activation, a key oncogenic driver in HPV-associated malignancies, and malignant progression to SCC. However, these mice develop SCC rapidly after a single exposure to a skin carcinogen, DMBA, which was increased by the prolonged exposure to a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA). Thus, only few oncogenic hits may be sufficient to induce cancer in E6/E7 expressing cells. All HPV-E6/E7 expressing SCC lesions exhibited increased mTOR activation. Remarkably, rapamycin, an mTOR inhibitor, abolished tumor development when administered to HPV-E6/E7 mice prior to DMBA exposure. Our findings revealed that mTOR inhibition protects HPV-E6/E7 expressing tissues form SCC development upon carcinogen exposure, thus supporting the potential clinical use of mTOR inhibitors as a molecular targeted approach for prevention of HPV-associated malignancies.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, NIH/NIDCR, Building 30, Bethesda, MD 20892-2190, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
36
|
Cyclin Y regulates the proliferation, migration, and invasion of ovarian cancer cells via Wnt signaling pathway. Tumour Biol 2016; 37:10161-75. [PMID: 26831658 DOI: 10.1007/s13277-016-4818-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/07/2016] [Indexed: 01/12/2023] Open
Abstract
This study is designated to investigate the roles of cyclin Y (CCNY) and Wnt signaling pathway in regulating ovarian cancer (OC) cell proliferation, migration, and invasion. Quantitative real-time PCR (qRT-PCR), Western blot, MTT assay, cell scratch, and transwell test were used in our study, and transplanted tumor model was constructed on nude mice. C-Myc, cyclin D1, PFTK1, ki67, OGT, and β-catenin protein expressions in tumor tissues were detected. CCNY was significantly upregulated in OC cell lines and tissues (both P < 0.05); significant association was observed between CCNY expression and clinicopathological stage, lymph node metastasis (LNM) (P < 0.05); and the CCNY expression in stages III to IV was higher than that in stages I to II, and patients with LNM had higher CCNY expression when compared with those in patients without LNM (P < 0.05); expressions of c-Myc, cyclin D, PFTK1, ki67, and OGT were upregulated in OC tissues compared with ovarian benign tissues, suggesting that these expressions were significantly different between the two groups (P < 0.05); CCNY significantly exacerbated proliferation, migration, and invasion of A2780 cells; c-Myc and cyclin D1 protein expressions increased as the expression of CCNY increased (P < 0.001); β-catenin expressions in A2780 cells with over-expression of CCNY were significantly increased in the nucleus, but significantly decreased in the cytoplasm (both P < 0.05); high expressions of CCNY exacerbated the proliferation of A2780 cells in nude mice and significantly increased c-Myc, cyclin D1, PFTK1, ki67, and OGT protein expressions in tumor tissues which were transplanted into nude mice (P < 0.01). CCNY might exacerbate the proliferation, migration, and invasion of OC cells via activating the Wnt signaling pathway. Thus, this study provides a theoretical foundation for the development of therapeutic drugs that are able to cure OC by targeting CCNY.
Collapse
|
37
|
Abstract
ABSTRACT
Tenascin-C (TNC) is a hexameric, multimodular extracellular matrix protein with several molecular forms that are created through alternative splicing and protein modifications. It is highly conserved amongst vertebrates, and molecular phylogeny indicates that it evolved before fibronectin. Tenascin-C has many extracellular binding partners, including matrix components, soluble factors and pathogens; it also influences cell phenotype directly through interactions with cell surface receptors. Tenascin-C protein synthesis is tightly regulated, with widespread protein distribution in embryonic tissues, but restricted distribution of tenascin-C in adult tissues. Tenascin-C is also expressed de novo during wound healing or in pathological conditions, including chronic inflammation and cancer. First described as a modulator of cell adhesion, tenascin-C also directs a plethora of cell signaling and gene expression programs by shaping mechanical and biochemical cues within the cellular microenvironment. Exploitment of the pathological expression and function of tenascin-C is emerging as a promising strategy to develop new diagnostic, therapeutic and bioengineering tools. In this Cell Science at a Glance article and the accompanying poster we provide a succinct and comprehensive overview of the structural and functional features of tenascin-C and its potential roles in developing embryos and under pathological conditions.
Collapse
Affiliation(s)
- Kim S. Midwood
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Matthias Chiquet
- Department of Orthodontics and Dentofacial Orthopedics, Medical Faculty, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis CA 95616-8643, USA
| | - Gertraud Orend
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MN3T) team, 3 av. Molière, Strasbourg 67200, France
- Université de Strasbourg, Strasbourg 67000, France
- LabEx Medalis, Université de Strasbourg, Strasbourg 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| |
Collapse
|
38
|
Lin CM, Yuan YP, Chen XC, Li HH, Cai BZ, Liu Y, Zhang H, Li Y, Huang K. Expression of Wnt/β-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles. J Mol Histol 2015; 46:233-40. [PMID: 25832347 DOI: 10.1007/s10735-015-9616-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023]
Abstract
The rat whisker hair follicle (HF) is a model for studying the reconstruction of the HF or dermal papilla (DP), and involves the Wnt/β-catenin signaling pathway, which is a key pathway in HF development and HF cycling after birth. It has been reported that Wnt/catenin signaling plays an indispensable role in human or rat pelages development and postnatal growth. However, the distribution of some Wnt/β-catenin signaling pathway factors and their relationship with the epithelial stem cell markers in whisker follicles has not been characterized. In this study, we investigated the immunolocalization of Wnt/catenin signaling pathway members, including Wnt10b, Wnt10a, Wnt5a, β-catenin, and downstream lymphoid enhancer-binding factor 1 (LEF1) and transcription factor 3 (TCF3), as well as, HF stem-cell markers CD34, CK15 and proliferating cell nuclear antigen (PCNA) protein, in rat anagen phase whisker follicles. β-catenin, Wnt5a, Wnt10b, Wnt10a, LEF1, and TCF3 were expressed in the outer root sheath (ORS), inner root sheath, matrix and hair shaft of anagen follicles. β-catenin, Wnt10b, LEF1, and TCF3 were highly expressed and Wnt5a and Wnt10a weakly expressed in DP and dermal sheath (DS) regions. The expression of α-smooth muscle actin was strong in the lower DS and it was also detected in some DP cells. CD34, CK15 and PCNA were all expressed in the ORS; and CD34 and PCNA were also detected in the matrix, however CD34 was extensively expressed in DP and DS regions. Our studies located the position of Wnts, downstream LEF1 and TCF3 and stem cell marker proteins, which provide new information in understanding the role of the Wnt singaling pathway in whisker follicles' growth.
Collapse
Affiliation(s)
- Chang-min Lin
- Department of Histology and Embryology, Shantou University Medical College, No. 22 XinLing Road, Shantou, 515041, Guangdong Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|