1
|
Zhao M, Taniguchi Y, Shimono C, Jonouchi T, Cheng Y, Shimizu Y, Nalbandian M, Yamamoto T, Nakagawa M, Sekiguchi K, Sakurai H. Heparan Sulfate Chain-Conjugated Laminin-E8 Fragments Advance Paraxial Mesodermal Differentiation Followed by High Myogenic Induction from hiPSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308306. [PMID: 38685581 PMCID: PMC11234437 DOI: 10.1002/advs.202308306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have great therapeutic potential. The cell source differentiated from hiPSCs requires xeno-free and robust methods for lineage-specific differentiation. Here, a system is described for differentiating hiPSCs on new generation laminin fragments (NGLFs), a recombinant form of a laminin E8 fragment conjugated to the heparan sulfate chains (HS) attachment domain of perlecan. Using NGLFs, hiPSCs are highly promoted to direct differentiation into a paraxial mesoderm state with high-efficiency muscle lineage generation. HS conjugation to the C-terminus of Laminin E8 fragments brings fibroblast growth factors (FGFs) bound to the HS close to the cell surface of hiPSCs, thereby facilitating stronger FGF signaling pathways stimulation and initiating HOX gene expression, which triggers the paraxial mesoderm differentiation of hiPSCs. This highly efficient differentiation system can provide a roadmap for paraxial mesoderm development and an infinite source of myocytes and muscle stem cells for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
- Center for Medical EpigeneticsSchool of Basic Medical SciencesChongqing Medical University1 Yixueyuan Road, Yuzhong DistrictChongqing400016China
| | - Yukimasa Taniguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Chisei Shimono
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Tatsuya Jonouchi
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yushen Cheng
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yasuhiro Shimizu
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Minas Nalbandian
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Takuya Yamamoto
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Masato Nakagawa
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Hidetoshi Sakurai
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| |
Collapse
|
2
|
Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the Novel Multifunctional Nerve Guidance Conduits: From Specific Regenerative Procedures to Motor Function Rebuilding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307805. [PMID: 37750196 DOI: 10.1002/adma.202307805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.
Collapse
Affiliation(s)
- Weixian Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nuozi Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Root-Bernstein R, Huber J, Ziehl A, Pietrowicz M. SARS-CoV-2 and Its Bacterial Co- or Super-Infections Synergize to Trigger COVID-19 Autoimmune Cardiopathies. Int J Mol Sci 2023; 24:12177. [PMID: 37569555 PMCID: PMC10418384 DOI: 10.3390/ijms241512177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Autoimmune cardiopathies (AC) following COVID-19 and vaccination against SARS-CoV-2 occur at significant rates but are of unknown etiology. This study investigated the possible roles of viral and bacterial mimicry, as well as viral-bacterial co-infections, as possible inducers of COVID-19 AC using proteomic methods and enzyme-linked immunoadsorption assays. BLAST and LALIGN results of this study demonstrate that SARS-CoV-2 shares a significantly greater number of high quality similarities to some cardiac protein compared with other viruses; that bacteria such as Streptococci, Staphylococci and Enterococci also display very significant similarities to cardiac proteins but to a different set than SARS-CoV-2; that the importance of these similarities is largely validated by ELISA experiments demonstrating that polyclonal antibodies against SARS-CoV-2 and COVID-19-associated bacteria recognize cardiac proteins with high affinity; that to account for the range of cardiac proteins targeted by autoantibodies in COVID-19-associated autoimmune myocarditis, both viral and bacterial triggers are probably required; that the targets of the viral and bacterial antibodies are often molecularly complementary antigens such as actin and myosin, laminin and collagen, or creatine kinase and pyruvate kinase, that are known to bind to each other; and that the corresponding viral and bacterial antibodies recognizing these complementary antigens also bind to each other with high affinity as if they have an idiotype-anti-idiotype relationship. These results suggest that AC results from SARS-CoV-2 infections or vaccination complicated by bacterial infections. Vaccination against some of these bacterial infections, such as Streptococci and Haemophilus, may therefore decrease AC risk, as may the appropriate and timely use of antibiotics among COVID-19 patients and careful screening of vaccinees for signs of infection such as fever, diarrhea, infected wounds, gum disease, etc.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (J.H.); (A.Z.); (M.P.)
| | | | | | | |
Collapse
|
4
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
5
|
Chen J, Zhu Z, Chen J, Luo Y, Li L, Liu K, Ding S, Li H, Liu M, Zhou C, Luo B. Photocurable liquid crystal hydrogels with different chargeability and tunable viscoelasticity based on chitin whiskers. Carbohydr Polym 2022; 301:120299. [DOI: 10.1016/j.carbpol.2022.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
|
6
|
Kihara Y, Homma J, Takagi R, Ishigaki K, Nagata S, Yamato M. Laminin-221-derived recombinant fragment facilitates isolation of cultured skeletal myoblasts. Regen Ther 2022; 20:147-156. [PMID: 35620637 PMCID: PMC9111930 DOI: 10.1016/j.reth.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Laminin is a major component of the basement membrane, containing multiple domains that bind integrin, collagen, nidogen, dystroglycan, and heparan sulfate. Laminin-221, expressed in skeletal and cardiac muscles, has strong affinity for the cell-surface receptor, integrin α7X2β1. The E8 domain of laminin-221, which is essential for cell integrin binding, is commercially available as a purified recombinant protein fragment. In this study, recombinant E8 fragment was used to purify primary rodent myoblasts. We established a facile and inexpensive method for primary myoblast culture exploiting the high affinity binding of integrin α7X2β1 to laminin-221. Methods Total cell populations from dissociated muscle tissue were enzymatically digested and seeded onto laminin-221 E8 fragment-coated dishes. The culture medium containing non-adherent floating cells was removed after 2-hour culture at 37 °C. The adherent cells were subjected to immunofluorescence staining of desmin, differentiation experiments, and gene expression analysis. Results The cells obtained were 70.3 ± 5.49% (n = 5) desmin positive in mouse and 67.7 ± 1.65% (n = 3) in rat. Immunofluorescent staining and gene expression analyses of cultured cells showed phenotypic traits of myoblasts. Conclusion This study reports a novel facile method for primary culture of myoblasts obtained from mouse and rat skeletal muscle by exploiting the high affinity of integrin α7X2β1 to laminin-221. Myoblasts are muscle progenitor cells that differentiate into skeletal muscle. Various methods have been reported to isolate myoblasts, such as FACS and MACS. Integrin α7X2, predominantly expressed in myocytes and cardiomyocytes, binds laminin-221 with high affinity. We established a novel method for primary culture of myoblasts by utilizing the high affinity of integrin α7X2β1 to laminin-221.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Corresponding author. Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. Tel: +81 3-3353-8111, Fax: +81 3-3359-6046
| |
Collapse
|
7
|
Application of the water-insoluble, temperature-responsive block polymer poly(butyl methacrylate-block-N-isopropylacrylamide) for pluripotent stem cell culture and cell-selective detachment. J Biosci Bioeng 2022; 133:502-508. [PMID: 35246394 DOI: 10.1016/j.jbiosc.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Induced pluripotent stem (iPS) cells have been widely studied in regenerative medicine, pathology modeling, and drug screening. Stable mass culture of iPS cells is essential for these applications. iPS cells can spontaneously differentiate into other cells during culture, and removal of these differentiated cells is necessary. Herein, a cost-effective culture method suitable for mass culture and a detailed analysis of the selective detachment of iPS cells are presented. A simple method for coating the water-insoluble thermoresponsive polymer poly (butyl methacrylate-block-N-isopropylacrylamide) on commercially available polystyrene dishes was employed. Analysis of the effects of the polymer composition, coating thickness, and surface structure on iPS cell culture/detachment showed that a coating thickness of approximately 10-40 nm using a polymer with a high poly (N-isopropylacrylamide) content was suitable for iPS cell detachment. Moreover, an interesting change in surface morphology was observed following temperature variation, thereby affecting laminin adsorption. Second, selective detachment in cocultures of iPS cells and differentiated cells enabled collection of iPS cells with more than 98% purity. Finally, long-term iPS cell culture was conducted using temperature-responsive cell detachment. Overall, long-term maintenance-free culture of iPS cells was possible without manual removal of differentiated cells.
Collapse
|
8
|
Combined administration of laminin-221 and prostacyclin agonist enhances endogenous cardiac repair in an acute infarct rat heart. Sci Rep 2021; 11:22243. [PMID: 34782616 PMCID: PMC8593012 DOI: 10.1038/s41598-021-00918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Although endogenous cardiac repair by recruitment of stem cells may serve as a therapeutic approach to healing a damaged heart, how to effectively enhance the migration of stem cells to the damaged heart is unclear. Here, we examined whether the combined administration of prostacyclin agonist (ONO1301), a multiple-cytokine inducer, and stem cell niche laminin-221 (LM221), enhances regeneration through endogenous cardiac repair. We administered ONO1301- and LM221-immersed sheets, LM221-immersed sheets, ONO1301-immersed sheets, and PBS-immersed sheets (control) to an acute infarction rat model. Four weeks later, cardiac function, histology, and cytokine expression were analysed. The combined administration of LM221 and ONO1301 upregulated angiogenic and chemotactic factors in the myocardium after 4 weeks and enhanced the accumulation of ILB4 positive cells, SMA positive cells, and platelet-derived growth factor receptor alpha (PDGFRα) and CD90 double-positive cells, leading to the generation of mature microvascular networks. Interstitial fibrosis reduced and functional recovery was prominent in LM221- and ONO1301-administrated hearts as compared with those in ONO1301-administrated or control hearts. LM221 and ONO1301 combination enhanced recruitment of PDGFRα and CD90 double-positive cells, maturation of vessels, and functional recovery in rat acute myocardial infarction hearts, highlighting a new promising acellular approach for the failed heart.
Collapse
|
9
|
Human induced pluripotent stem cell-derived three-dimensional cardiomyocyte tissues ameliorate the rat ischemic myocardium by remodeling the extracellular matrix and cardiac protein phenotype. PLoS One 2021; 16:e0245571. [PMID: 33720933 PMCID: PMC7959395 DOI: 10.1371/journal.pone.0245571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role in the viability and survival of implanted human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We hypothesized that coating of three-dimensional (3D) cardiac tissue-derived hiPSC-CMs with the ECM protein fibronectin (FN) would improve the survival of transplanted cells in the heart and improve heart function in a rat model of ischemic heart failure. To test this hypothesis, we first explored the tolerance of FN-coated hiPSC-CMs to hypoxia in an in vitro study. For in vivo assessments, we constructed 3D-hiPSC cardiac tissues (3D-hiPSC-CTs) using a layer-by-layer technique, and then the cells were implanted in the hearts of a myocardial infarction rat model (3D-hiPSC-CTs, n = 10; sham surgery control group (without implant), n = 10). Heart function and histology were analyzed 4 weeks after transplantation. In the in vitro assessment, cell viability and lactate dehydrogenase assays showed that FN-coated hiPSC-CMs had improved tolerance to hypoxia compared with the control cells. In vivo, the left ventricular ejection fraction of hearts implanted with 3D-hiPSC-CT was significantly better than that of the sham control hearts. Histological analysis showed clear expression of collagen type IV and plasma membrane markers such as desmin and dystrophin in vivo after implantation of 3D-hiPSC-CT, which were not detected in 3D-hiPSC-CMs in vitro. Overall, these results indicated that FN-coated 3D-hiPSC-CT could improve distressed heart function in a rat myocardial infarction model with a well-expressed cytoskeletal or basement membrane matrix. Therefore, FN-coated 3D-hiPSC-CT may serve as a promising replacement for heart transplantation and left ventricular assist devices and has the potential to improve survivability and therapeutic efficacy in cases of ischemic heart disease.
Collapse
|
10
|
Samura T, Miyagawa S, Kawamura T, Fukushima S, Yokoyama JY, Takeda M, Harada A, Ohashi F, Sato-Nishiuchi R, Toyofuku T, Toda K, Sekiguchi K, Sawa Y. Laminin-221 Enhances Therapeutic Effects of Human-Induced Pluripotent Stem Cell-Derived 3-Dimensional Engineered Cardiac Tissue Transplantation in a Rat Ischemic Cardiomyopathy Model. J Am Heart Assoc 2020; 9:e015841. [PMID: 32783519 PMCID: PMC7660810 DOI: 10.1161/jaha.119.015841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Extracellular matrix, especially laminin‐221, may play crucial roles in viability and survival of human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPS‐CMs) after in vivo transplant. Then, we hypothesized laminin‐221 may have an adjuvant effect on therapeutic efficacy by enhancing cell viability and survival after transplantation of 3‐dimensional engineered cardiac tissue (ECT) to a rat model of myocardial infarction. Methods and Results In vitro study indicates the impacts of laminin‐221 on hiPS‐CMs were analyzed on the basis of mechanical function, mitochondrial function, and tolerance to hypoxia. We constructed 3‐dimensional ECT containing hiPS‐CMs and fibrin gel conjugated with laminin‐221. Heart function and in vivo behavior were assessed after engraftment of 3‐dimensional ECT (laminin‐conjugated ECT, n=10; ECT, n=10; control, n=10) in a rat model of myocardial infarction. In vitro assessment indicated that laminin‐221 improves systolic velocity, diastolic velocity, and maximum capacity of oxidative metabolism of hiPS‐CMs. Cell viability and lactate dehydrogenase production revealed that laminin‐221 improved tolerance to hypoxia. Furthermore, analysis of mRNA expression revealed that antiapoptotic genes were upregulated in the laminin group under hypoxic conditions. Left ventricular ejection fraction of the laminin‐conjugated ECT group was significantly better than that of other groups 4 weeks after transplantation. Laminin‐conjugated ECT transplantation was associated with significant improvements in expression levels of rat vascular endothelial growth factor. In early assessments, cell survival was also improved in laminin‐conjugated ECTs compared with ECT transplantation without laminin‐221. Conclusions In vitro laminin‐221 enhanced mechanical and metabolic function of hiPS‐CMs and improved the therapeutic impact of 3‐dimensional ECT in a rat ischemic cardiomyopathy model. These findings suggest that adjuvant laminin‐221 may provide a clinical benefit to hiPS‐CM constructs.
Collapse
Affiliation(s)
- Takaaki Samura
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Jun-Ya Yokoyama
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Akima Harada
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Fumiya Ohashi
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application Institute for Protein Research Osaka University Osaka Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Regenerative Medicine Osaka University Graduate School of Medicine Osaka Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application Institute for Protein Research Osaka University Osaka Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
11
|
Laminins in osteogenic differentiation and pluripotency maintenance. Differentiation 2020; 114:13-19. [DOI: 10.1016/j.diff.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/23/2023]
|
12
|
Barros D, Amaral IF, Pêgo AP. Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells. Biomacromolecules 2019; 21:276-293. [PMID: 31789020 DOI: 10.1021/acs.biomac.9b01319] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Laminin is a heterotrimeric glycoprotein with a key role in the formation and maintenance of the basement membrane architecture and properties, as well as on the modulation of several biological functions, including cell adhesion, migration, differentiation and matrix-mediated signaling. In the central nervous system (CNS), laminin is differentially expressed during development and homeostasis, with an impact on the modulation of cell function and fate. Within neurogenic niches, laminin is one of the most important and well described extracellular matrix (ECM) proteins. Specifically, efforts have been made to understand laminin assembly, domain architecture, and interaction of its different bioactive domains with cell surface receptors, soluble signaling molecules, and ECM proteins, to gain insight into the role of this ECM protein and its receptors on the modulation of neurogenesis, both in homeostasis and during repair. This is also expected to provide a rational basis for the design of biomaterial-based matrices mirroring the biological properties of the basement membrane of neural stem cell niches, for application in neural tissue repair and cell transplantation. This review provides a general overview of laminin structure and domain architecture, as well as the main biological functions mediated by this heterotrimeric glycoprotein. The expression and distribution of laminin in the CNS and, more specifically, its role within adult neural stem cell niches is summarized. Additionally, a detailed overview on the use of full-length laminin and laminin derived peptide/recombinant laminin fragments for the development of hydrogels for mimicking the neurogenic niche microenvironment is given. Finally, the main challenges associated with the development of laminin-inspired hydrogels and the hurdles to overcome for these to progress from bench to bedside are discussed.
Collapse
Affiliation(s)
- Daniela Barros
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal
| | - Isabel F Amaral
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| |
Collapse
|
13
|
Guan S, Zhang K, Li J. Recent Advances in Extracellular Matrix for Engineering Stem Cell Responses. Curr Med Chem 2019; 26:6321-6338. [DOI: 10.2174/0929867326666190704121309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation is an advanced medical technology, which brings hope for the
treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential
ability, stem cell research has been pushed to the forefront of regenerative medicine and has become
a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions
and important biological significance in regulating the life activities of cells, which may play crucial
roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the
stem cells and their engineering application, and highlight the control of the fate of stem cells, we
offer our perspectives on the various challenges and opportunities facing the use of the components
of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
14
|
Laminin-511 Supplementation Enhances Stem Cell Localization With Suppression in the Decline of Cardiac Function in Acute Infarct Rats. Transplantation 2019; 103:e119-e127. [PMID: 30730478 DOI: 10.1097/tp.0000000000002653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The extracellular matrix, in particular basement membrane components such as laminins (LMs), is essential for stem cell differentiation and self-renewal. LM511 and LM221 are the main extracellular matrix components of the epicardium, where stem cells were abundant. Here, we examined whether LMs affected the regeneration process by modulating stem cell activities. METHODS In vitro, adhesive, and proliferative activities of mesenchymal stem cells (MSCs) were evaluated on LM511 and LM221. To examine the effects of LMs in vivo, we established an acute myocardial infarction model by ligation of the proximal part of the left anterior descending artery at the height of the left atrial appendage and then placed atelocollagen sheets with or without LM511 and LM221 over the anterolateral surface of the left ventricular wall. Four or 8 weeks later, cardiac function, histology, and cytokine expressions were analyzed. RESULTS MSCs showed greater proliferation and adhesive properties on LM511 than on LM221. In vivo, at 4 weeks, isolectin B4-positive cells were significantly higher in the LM511-transplanted group than in the control group. Moreover, some isolectin B4-positive cells expressed both platelet-derived growth factor receptor α and CD90, suggesting that LM511 enhanced MSC recruitment and attachment at the implanted site. After 8 weeks, these cells were more abundant than at 4 weeks. Transplantation with LM511-conjugated sheets increased the expression of cardioprotective and angiogenic factors. CONCLUSIONS Transplantation with LM511-conjugated sheets enhanced MSC localization to the implantation site and modulated stem cells activities, leading to angiogenesis in acute myocardial infarction rat models.
Collapse
|
15
|
|