1
|
Yuan Z, Lin B, Wang C, Yan Z, Yang F, Su H. Collagen remodeling-mediated signaling pathways and their impact on tumor therapy. J Biol Chem 2025; 301:108330. [PMID: 39984051 PMCID: PMC11957794 DOI: 10.1016/j.jbc.2025.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
In addition to their traditional roles in maintaining tissue morphology and organ development, emerging evidence suggests that collagen (COL) remodeling-referring to dynamic changes in the quantity, stiffness, arrangements, cleavage states, and homo-/hetero-trimerization of COLs-serves as a key signaling mechanism that governs tumor growth and metastasis. COL receptors act as switches, linking various forms of COL remodeling to different cell types during cancer progression, including cancer cells, immune cells, and cancer-associated fibroblasts. In this review, we summarize recent findings on the signaling pathways mediated by COL arrangement, cleavage, and trimerization states (both homo- and hetero-), as well as the roles of the primary COL receptors-integrin, DDR1/2, LAIR-1/2, MRC2, and GPVI-in cancer progression. We also discuss the latest therapeutic strategies targeting COL fragments, cancer-associated fibroblasts, and COL receptors, including integrins, DDR1/2, and LAIR1/2. Understanding the pathways modulated by COL remodeling and COL receptors in various pathological contexts will pave the way for developing new precision therapies.
Collapse
Affiliation(s)
- Zihang Yuan
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, MOE Innovation Center for Basic Research in Tumor Immunotherapy, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bo Lin
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunlan Wang
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhaoyue Yan
- The Department of Stomatology, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong, China
| | - Fei Yang
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, MOE Innovation Center for Basic Research in Tumor Immunotherapy, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hua Su
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
3
|
Dai Y, Li Y, Xu J, Zhang J. A highly selective inhibitor of discoidin domain receptor-1 (DDR1-IN-1) protects corneal epithelial cells from YAP/ACSL4-mediated ferroptosis in dry eye. Br J Pharmacol 2024; 181:4245-4261. [PMID: 38978400 DOI: 10.1111/bph.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the involvement of discoidin domain receptor (DDR) in dry eye and assessed the potential of specific DDR inhibitors as a therapeutic strategy for dry eye by exploring the underlying mechanism. EXPERIMENTAL APPROACH Dry eye was induced in Wistar rats by applying 0.2% benzalkonium chloride (BAC), after which rats were treated topically for 7 days with DDR1-IN-1, a selective inhibitor of DDR1. Clinical manifestations of dry eye were assessed on Day-7 post-treatment. Histological evaluation of corneal damage was performed using haematoxylin and eosin (H&E) staining. In vitro, immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress (HS) were treated with varying doses of DDR1-IN-1 for 24 h. The levels of lipid peroxidation in dry eye corneas or HS-stimulated HCECs were assessed. Protein levels of DDR1/DDR2 and related pathways were detected by western blotting. The cellular distribution of acyl-CoA synthetase long chain family member 4 (ACSL4) and Yes-associated protein (YAP) was evaluated using immunohistochemistry or immunofluorescent staining. KEY RESULTS In dry eye corneas, only DDR1 expression was significantly up-regulated compared with normal controls. DDR1-IN-1 treatment significantly alleviated dry eye symptoms in vivo. The treatment remarkably reduced lipid hydroperoxide (LPO) levels and suppressed the expression of ferroptosis markers, particularly ACSL4. Overexpression or reactivation of YAP diminished the protective effects of DDR1-IN-1, indicating the involvement of the Hippo/YAP pathway in DDR1-targeted therapeutic effects. CONCLUSIONS AND IMPLICATIONS This study confirms the significance of DDR1 in dry eye and highlights the potential of selective DDR1 inhibitor(s) for dry eye treatment.
Collapse
Affiliation(s)
- Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
4
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
5
|
Zhang Z, Li W, Wang Z, Ma S, Zheng F, Liu H, Zhang X, Ding Y, Yin Z, Zheng X. Codon Bias of the DDR1 Gene and Transcription Factor EHF in Multiple Species. Int J Mol Sci 2024; 25:10696. [PMID: 39409024 PMCID: PMC11477322 DOI: 10.3390/ijms251910696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Milk production is an essential economic trait in cattle, and understanding the genetic regulation of this trait can enhance breeding strategies. The discoidin domain receptor 1 (DDR1) gene has been identified as a key candidate gene that influences milk production, and ETS homologous factor (EHF) is recognized as a critical transcription factor that regulates DDR1 expression. Codon usage bias, which affects gene expression and protein function, has not been fully explored in cattle. This study aims to examine the codon usage bias of DDR1 and EHF transcription factors to understand their roles in dairy production traits. Data from 24 species revealed that both DDR1 and EHF predominantly used G/C-ending codons, with the GC3 content averaging 75.49% for DDR1 and 61.72% for EHF. Synonymous codon usage analysis identified high-frequency codons for both DDR1 and EHF, with 17 codons common to both genes. Correlation analysis indicated a negative relationship between the effective number of codons and codon adaptation index for both DDR1 and EHF. Phylogenetic and clustering analyses revealed similar codon usage patterns among closely related species. These findings suggest that EHF plays a crucial role in regulating DDR1 expression, offering new insights into genetically regulating milk production in cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Z.Z.); (W.L.); (Z.W.); (S.M.); (F.Z.); (H.L.); (X.Z.); (Y.D.)
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Z.Z.); (W.L.); (Z.W.); (S.M.); (F.Z.); (H.L.); (X.Z.); (Y.D.)
| |
Collapse
|
6
|
Shores KL, Truskey GA. Mechanotransduction of the vasculature in Hutchinson-Gilford Progeria Syndrome. Front Physiol 2024; 15:1464678. [PMID: 39239311 PMCID: PMC11374724 DOI: 10.3389/fphys.2024.1464678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that causes severe cardiovascular disease, resulting in the death of patients in their teenage years. The disease pathology is caused by the accumulation of progerin, a mutated form of the nuclear lamina protein, lamin A. Progerin binds to the inner nuclear membrane, disrupting nuclear integrity, and causes severe nuclear abnormalities and changes in gene expression. This results in increased cellular inflammation, senescence, and overall dysfunction. The molecular mechanisms by which progerin induces the disease pathology are not fully understood. Progerin's detrimental impact on nuclear mechanics and the role of the nucleus as a mechanosensor suggests dysfunctional mechanotransduction could play a role in HGPS. This is especially relevant in cells exposed to dynamic, continuous mechanical stimuli, like those of the vasculature. The endothelial (ECs) and smooth muscle cells (SMCs) within arteries rely on physical forces produced by blood flow to maintain function and homeostasis. Certain regions within arteries produce disturbed flow, leading to an impaired transduction of mechanical signals, and a reduction in cellular function, which also occurs in HGPS. In this review, we discuss the mechanics of nuclear mechanotransduction, how this is disrupted in HGPS, and what effect this has on cell health and function. We also address healthy responses of ECs and SMCs to physiological mechanical stimuli and how these responses are impaired by progerin accumulation.
Collapse
Affiliation(s)
- Kevin L Shores
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Khalil AA, Smits D, Haughton PD, Koorman T, Jansen KA, Verhagen MP, van der Net M, van Zwieten K, Enserink L, Jansen L, El-Gammal AG, Visser D, Pasolli M, Tak M, Westland D, van Diest PJ, Moelans CB, Roukens MG, Tavares S, Fortier AM, Park M, Fodde R, Gloerich M, Zwartkruis FJT, Derksen PW, de Rooij J. A YAP-centered mechanotransduction loop drives collective breast cancer cell invasion. Nat Commun 2024; 15:4866. [PMID: 38849373 PMCID: PMC11161601 DOI: 10.1038/s41467-024-49230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Daan Smits
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D Haughton
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin A Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mirjam van der Net
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty van Zwieten
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisa Jansen
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Abdelrahman G El-Gammal
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daan Visser
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Milena Pasolli
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max Tak
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Denise Westland
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Guy Roukens
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anne-Marie Fortier
- Goodman Cancer Institute McGill University, Depts Biochemistry and Oncology, McGill University, Goodman Cancer Institute, Montréal, Canada
| | - Morag Park
- Goodman Cancer Institute McGill University, Depts Biochemistry and Oncology, McGill University, Goodman Cancer Institute, Montréal, Canada
| | - Riccardo Fodde
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martijn Gloerich
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick Wb Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Johan de Rooij
- Center for Molecular Medicine (CMM), University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Wu D, Ding Z, Lu T, Chen Y, Zhang F, Lu S. DDR1-targeted therapies: current limitations and future potential. Drug Discov Today 2024; 29:103975. [PMID: 38580164 DOI: 10.1016/j.drudis.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Discoidin domain receptor (DDR)-1 has a crucial role in regulating vital processes, including cell differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. Overexpression or activation of DDR1 in various pathological scenarios makes it a potential therapeutic target for the treatment of cancer, fibrosis, atherosclerosis, and neuropsychiatric, psychiatric, and neurodegenerative disorders. In this review, we summarize current therapeutic approaches targeting DDR1 from a medicinal chemistry perspective. Furthermore, we analyze factors other than issues of low selectivity and risk of resistance, contributing to the infrequent success of DDR1 inhibitors. The complex interplay between DDR1 and the extracellular matrix (ECM) necessitates additional validation, given that DDR1 might exhibit complex and synergistic interactions with other signaling molecules during ECM regulation. The mechanisms involved in DDR1 regulation in cancer and inflammation-related diseases also remain unknown.
Collapse
Affiliation(s)
- Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Zihui Ding
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, China.
| | - Feng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Guidotti G, Duelen R, Bloise N, Soccio M, Gazzano M, Aluigi A, Visai L, Sampaolesi M, Lotti N. The ad hoc chemical design of random PBS-based copolymers influences the activation of cardiac differentiation while altering the HYPPO pathway target genes in hiPSCs. BIOMATERIALS ADVANCES 2023; 154:213583. [PMID: 37604040 DOI: 10.1016/j.bioadv.2023.213583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Cardiac tissue engineering is a cutting-edge technology aiming to replace irreversibly damaged cardiac tissue and restore contractile functionality. However, cardiac tissue engineering porous and perfusable scaffolds to enable oxygen supply in vitro and eventually promote angiogenesis in vivo are still desirable. Two fully-aliphatic random copolymers of poly(butylene succinate) (PBS), poly(butylene succinate/Pripol), P(BSBPripol), and poly(butylene/neopentyl glycol succinate), P(BSNS), containing two different subunits, neopentyl glycol and Pripol 1009, were successfully synthesized and then electrospun in tridimentional fibrous mats. The copolymers show different thermal and mechanical behaviours as result of their chemical structure. In particular, copolymerization led to a reduction in crystallinity and consequently PBS stiffness, reaching values of elastic modulus very close to those of soft tissues. Then, to check the biological suitability, human induced Pluripotent Stem Cells (hiPSCs) were directly seeded on both PBS-based copolymeric scaffolds. The results confirmed the ability of both the scaffolds to sustain cell viability and to maintain their stemness during cell expansion. Furthermore, gene expression and immunofluorescence analysis showed that P(BSBPripol) scaffold promoted an upregulation of the early cardiac progenitor and later-stage markers with a simultaneously upregulation of HYPPO pathway gene expression, crucial for mechanosensing of cardiac progenitor cells. These results suggest that the correct ad-hoc chemical design and, in turn, the mechanical properties of the matrix, such as substrate stiffness, together with surface porosity, play a critical role in regulating the behaviour of cardiac progenitors, which ultimately offers valuable insights into the development of novel bio-inspired scaffolds for cardiac tissue regeneration.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, (PU), Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
10
|
Liu J, Zhao C, Xiao X, Li A, Liu Y, Zhao J, Fan L, Liang Z, Pang W, Yao W, Li W, Zhou J. Endothelial discoidin domain receptor 1 senses flow to modulate YAP activation. Nat Commun 2023; 14:6457. [PMID: 37833282 PMCID: PMC10576099 DOI: 10.1038/s41467-023-42341-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Mechanotransduction in endothelial cells is critical to maintain vascular homeostasis and can contribute to disease development, yet the molecules responsible for sensing flow remain largely unknown. Here, we demonstrate that the discoidin domain receptor 1 (DDR1) tyrosine kinase is a direct mechanosensor and is essential for connecting the force imposed by shear to the endothelial responses. We identify the flow-induced activation of endothelial DDR1 to be atherogenic. Shear force likely causes conformational changes of DDR1 ectodomain by unfolding its DS-like domain to expose the buried cysteine-287, whose exposure facilitates force-induced receptor oligomerization and phase separation. Upon shearing, DDR1 forms liquid-like biomolecular condensates and co-condenses with YWHAE, leading to nuclear translocation of YAP. Our findings establish a previously uncharacterized role of DDR1 in directly sensing flow, propose a conceptual framework for understanding upstream regulation of the YAP signaling, and offer a mechanism by which endothelial activation of DDR1 promotes atherosclerosis.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Chuanrong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aohan Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yueqi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jianan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Linwei Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Zhenhui Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China.
| |
Collapse
|
11
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
12
|
Xiong YX, Zhang XC, Zhu JH, Zhang YX, Pan YL, Wu Y, Zhao JP, Liu JJ, Lu YX, Liang HF, Zhang ZG, Zhang WG. Collagen I-DDR1 signaling promotes hepatocellular carcinoma cell stemness via Hippo signaling repression. Cell Death Differ 2023; 30:1648-1665. [PMID: 37117273 PMCID: PMC10307904 DOI: 10.1038/s41418-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer stem cells (CSCs) are a minority population of cancer cells with stemness and multiple differentiation potentials, leading to cancer progression and therapeutic resistance. However, the concrete mechanism of CSCs in hepatocellular carcinoma (HCC) remains obscure. We found that in advanced HCC tissues, collagen I was upregulated, which is consistent with the expression of its receptor DDR1. Accordingly, high collagen I levels accompanied by high DDR1 expression are associated with poor prognoses in patients with HCC. Collagen I-induced DDR1 activation enhanced HCC cell stemness in vitro and in vivo. Mechanistically, DDR1 interacts with CD44, which acts as a co-receptor that amplifies collagen I-induced DDR1 signaling, and collagen I-DDR1 signaling antagonized Hippo signaling by facilitating the recruitment of PP2AA to MST1, leading to exaggerated YAP activation. The combined inhibition of DDR1 and YAP synergistically abrogated HCC cell stemness in vitro and tumorigenesis in vivo. A radiomic model based on T2 weighted images can noninvasively predict collagen I expression. These findings reveal the molecular basis of collagen I-DDR1 signaling inhibiting Hippo signaling and highlight the role of CD44/DDR1/YAP axis in promoting cancer cell stemness, suggesting that DDR1 and YAP may serve as novel prognostic biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Yi-Xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiao-Chao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing-Han Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yu-Xin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yong-Long Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jian-Ping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jun-Jie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yuan-Xiang Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| | - Zhan-Guo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| | - Wan-Guang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Franceschi RT, Hallett SA, Ge C. Discoidin domain receptors; an ancient family of collagen receptors has major roles in bone development, regeneration and metabolism. FRONTIERS IN DENTAL MEDICINE 2023; 4:1181817. [PMID: 38222874 PMCID: PMC10785288 DOI: 10.3389/fdmed.2023.1181817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The extracellular matrix (ECM) niche plays a critical role in determining cellular behavior during bone development including the differentiation and lineage allocation of skeletal progenitor cells to chondrocytes, osteoblasts, or marrow adipocytes. As the major ECM component in mineralized tissues, collagen has instructive as well as structural roles during bone development and is required for bone cell differentiation. Cells sense their extracellular environment using specific cell surface receptors. For many years, specific β1 integrins were considered the main collagen receptors in bone, but, more recently, the important role of a second, more primordial collagen receptor family, the discoidin domain receptors, has become apparent. This review will specifically focus on the roles of discoidin domain receptors in mineralized tissue development as well as related functions in abnormal bone formation, regeneration and metabolism.
Collapse
Affiliation(s)
- Renny T. Franceschi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Shawn A. Hallett
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Liu J, Wang J, Liu Y, Xie SA, Zhang J, Zhao C, Zhou Y, Pang W, Yao W, Peng Q, Wang X, Zhou J. Liquid-Liquid Phase Separation of DDR1 Counteracts the Hippo Pathway to Orchestrate Arterial Stiffening. Circ Res 2023; 132:87-105. [PMID: 36475898 DOI: 10.1161/circresaha.122.322113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.).,Beijing Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China (J.W.)
| | - Yueqi Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Si-An Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Jianrui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Chuanrong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| | - Yuan Zhou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China (Y.Z.)
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.)
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.)
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, China (Q.P.)
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China (X.W.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., W.P., W.Y., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., Y.Z., J.Z.).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China (J.L., J.W., Y.L., S.-A.X., J.Z., C.Z., J.Z.)
| |
Collapse
|
15
|
Tian Y, Bai F, Zhang D. New target DDR1: A "double-edged sword" in solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188829. [PMID: 36356724 DOI: 10.1016/j.bbcan.2022.188829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Globally, cancer is a major catastrophic disease that seriously threatens human health. Thus, there is an urgent need to find new strategies to treat cancer. Among them, identifying new targets is one of the best ways to treat cancer at present. Especially in recent years, scientists have discovered many new targets and made breakthroughs in the treatment of cancer, bringing new hope to cancer patients. As one of the novel targets for cancer treatment, DDR1 has attracted much attention due to its unique role in cancer. Hence, here, we focus on a new target, DDR1, which may be a "double-edged sword" of human solid tumors. In this review, we provide a comprehensive overview of how DDR1 acts as a "double-edged sword" in cancer. First, we briefly introduce the structure and normal physiological function of DDR1; Second, we delineate the DDR1 expression pattern in single cells; Next, we sorte out the relationship between DDR1 and cancer, including the abnormal expression of DDR1 in cancer, the mechanism of DDR1 and cancer occurrence, and the value of DDR1 on cancer prognosis. In addition, we introduced the current status of global drug and antibody research and development targeting DDR1 and its future design prospects; Finally, we summarize and look forward to designing more DDR1-targeting drugs in the future to make further progress in the treatment of solid tumors.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Feihu Bai
- The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
16
|
Borza CM, Bolas G, Pozzi A. Genetic and pharmacological tools to study the role of discoidin domain receptors in kidney disease. Front Pharmacol 2022; 13:1001122. [PMID: 36249782 PMCID: PMC9554349 DOI: 10.3389/fphar.2022.1001122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Following injury the kidney undergoes a repair process, which results in replacement of the injured tissue with little evidence of damage. However, repetitive injuries or inability of the kidney to stop the repair process result in abnormal deposition of extracellular matrix (ECM) components leading to fibrosis and organ dysfunction. The synthesis/degradation of ECM components is finely regulated by several factors, including discoidin domain receptors (DDRs). These are receptor tyrosine kinases that are activated by collagens. Upon activation, DDRs control several cell functions that, when exacerbated, contribute to kidney injury and fibrosis. DDRs are undetectable in healthy kidney, but become rapidly upregulated in several kidney fibrotic conditions, thus making them attractive anti-fibrotic targets. DDRs contribute to kidney injury and fibrosis by promoting apoptosis of injured kidney cells, stimulating the production of pro-inflammatory cytokines, and regulating the production of ECM components. They achieve these effects by activating canonical intracellular molecules or by directly interacting with nuclear chromatin and promoting the transcription of pro-fibrotic genes. The goal of this review is to highlight canonical and non-canonical mechanisms whereby DDRs contribute to kidney injury/fibrosis. This review will summarize key findings obtained using cells and mice lacking DDRs and it will discuss the discovery and development of targeted DDR small molecule- and antisense-based inhibitors. Understanding the molecular mechanisms whereby DDRs control kidney injury and fibrosis might enable us to not only develop more selective and potent inhibitors, but to also determine when DDR inhibition needs to be achieved to prevent and/or halt the development of kidney fibrosis.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Gema Bolas
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ambra Pozzi
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, TN, United States
- Veterans Affairs Hospitals, Nashville, TN, United States
| |
Collapse
|
17
|
Sirvent A, Espie K, Papadopoulou E, Naim D, Roche S. New functions of DDR1 collagen receptor in tumor dormancy, immune exclusion and therapeutic resistance. Front Oncol 2022; 12:956926. [PMID: 35936735 PMCID: PMC9355703 DOI: 10.3389/fonc.2022.956926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 01/22/2023] Open
Abstract
The tumor microenvironment facilitates cancer progression and therapeutic resistance. Tumor collagens and their architecture play an essential role in this process. However, little is known about the mechanisms by which tumor cells sense and respond to this extracellular matrix environment. Recently, the Discoidin Domain Receptor 1 (DDR1), a collagen receptor and tyrosine kinase has emerged as an important player in this malignant process, although the underlying signaling mechanisms remain unclear. Here, we review new DDR1 functions in tumor dormancy following dissemination, immune exclusion and therapeutic resistance induced by stromal collagens deposition. We also discuss the signaling mechanisms behind these tumor activities and the therapeutic strategies aiming at targeting these collagens-dependent tumor responses.
Collapse
Affiliation(s)
| | | | | | | | - Serge Roche
- *Correspondence: Serge Roche, ; Audrey Sirvent,
| |
Collapse
|
18
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|