1
|
Alhashmi M, Gremida AME, Maharana SK, Antonaci M, Kerr A, Fu S, Lunn S, Turner DA, Al-Maslamani NA, Liu K, Meschis MM, Sutherland H, Wilson P, Clegg P, Wheeler GN, van 't Hof RJ, Bou-Gharios G, Yamamoto K. Skeletal progenitor LRP1 deficiency causes severe and persistent skeletal defects with Wnt pathway dysregulation. Bone Res 2025; 13:17. [PMID: 39865089 PMCID: PMC11770177 DOI: 10.1038/s41413-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 01/28/2025] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards, especially in the perichondrium, the stem cell layer surrounding developing limbs essential for bone formation. Lrp1 deficiency in these stem cells causes joint fusion, malformation of cartilage/bone template and markedly delayed or lack of primary ossification. These abnormalities, which resemble phenotypes associated with Wnt signalling pathways, result in severe and persistent skeletal defects including a severe deficit in hip joint and patella, and markedly deformed and low-density long bones leading to dwarfism and impaired mobility. Mechanistically, we show that LRP1 regulates core non-canonical Wnt/planar cell polarity (PCP) components that may explain the malformation of long bones. LRP1 directly binds to Wnt5a, facilitates its cell-association and endocytic degradation and recycling. In the developing limbs, LRP1 partially colocalises with Wnt5a and its deficiency alters abundance and distribution of Wnt5a and Vangl2. Finally, using Xenopus as a model system, we show the regulatory role for LRP1 in Wnt/PCP signalling. We propose that in skeletal progenitors, LRP1 plays a critical role in formation and maturity of multiple bones and joints by regulating Wnt signalling, providing novel insights into the fundamental processes of morphogenesis and the emergence of skeletal pathologies.
Collapse
Affiliation(s)
- Mohammad Alhashmi
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M E Gremida
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Santosh K Maharana
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Marco Antonaci
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Amy Kerr
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Shijian Fu
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Sharna Lunn
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David A Turner
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Noor A Al-Maslamani
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Ke Liu
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Maria M Meschis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Hazel Sutherland
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Peter Wilson
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Peter Clegg
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Robert J van 't Hof
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- VANTHOF SCIENTIFIC, Torun, Poland
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Yao D, Li M, Zeng W, Wang K, Liao Z, Chen E, Xing T, Liang Y, Tang J, Wen G, Ning Q, Li Y, Huang L. LRP1 mitigates intervertebral disc degeneration by inhibiting endoplasmic reticulum stress through stabilizing the PPARγ. J Orthop Translat 2025; 50:196-210. [PMID: 39895867 PMCID: PMC11786795 DOI: 10.1016/j.jot.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/26/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a significant cause of lower back pain, characterized by inflammation-mediated extracellular matrix (ECM) degradation, apoptosis, and aging of nucleus pulposus (NP) cells. Identifying key regulatory targets for these processes is crucial for IDD treatment. Previous research has highlighted the role of low-density lipoprotein receptor-related protein 1 (LRP1) in regulating ECM levels and cell fate, but its role in IDD remains under-explored. This study aims to elucidate the function and mechanism of LRP1 in the progression of IDD. Methods LRP1 expression was assessed in clinical tissue samples from patients diagnosed with IDD and in a rat IDD model established using needle puncture injuries. The effects of LRP1 knockdown and treatment with the LRP1 activator SP16 on apoptosis and ECM metabolism in NP cells were analyzed, with a focus on their relationship with endoplasmic reticulum (ER) stress. The interaction and regulatory mechanism between LRP1 and peroxisome proliferator-activated receptor gamma (PPARγ) were further explored to clarify how LRP1 regulates ER stress. Finally, the in vivo therapeutic effect of SP16 was investigated using a rat tail IDD model. Results We found that LRP1 expression was significantly downregulated in IDD. In NP cells with LRP1 knockdown, there was a marked increase in apoptosis and detrimental ECM remodeling, which were associated with the activation of ER stress. Our research further revealed that LRP1 interacts with PPARγ, stabilizing the PPARγ protein and preventing its lysosomal degradation, thereby mitigating ER stress. Activation of LRP1 in our models significantly reduced ER stress, matrix degradation, and apoptosis, thereby attenuating IDD both in vitro and in vivo. Conclusion This study systematically investigated the role and mechanisms of the LRP1/PPARγ/ER stress signaling axis in IDD. Our findings suggest that targeting LRP1 to modulate this signaling pathway could provide a promising therapeutic approach for the treatment of IDD. The Translational potential of this Article Our study demonstrated that LRP1 can reduce apoptosis and ECM degradation by inhibiting ER stress through stabilizing PPARγ, indicating that targeting LRP1 may be a novel therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tong Xing
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuwei Liang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jun Tang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guoming Wen
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Qing Ning
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
3
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Lee J, Lee H, Lee H, Shin M, Shin MG, Seo J, Lee EJ, Park SA, Park S. ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells. Nat Commun 2023; 14:8463. [PMID: 38123547 PMCID: PMC10733300 DOI: 10.1038/s41467-023-44319-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aβ peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aβ clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aβ pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aβ clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aβ clearance across the BBB.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Miram Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, and Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Korea.
| |
Collapse
|
6
|
Silva SV, Lima MA, Hodgson L, Freitas VM, Rodríguez-Manzaneque JC. ADAMTS-1 has nuclear localization in cells with epithelial origin and leads to decreased cell migration. Exp Cell Res 2023; 433:113852. [PMID: 37951335 PMCID: PMC10841765 DOI: 10.1016/j.yexcr.2023.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
In the study of tumorigenesis, the involvement of molecules within the extracellular matrix (ECM) is crucial. ADAMTSs (A Disintegrin and Metalloproteinase with Thrombospondin motifs), a group of secreted proteases known for their role in ECM remodeling, were primarily considered to be extracellular proteases. However, our research specifically detected ADAMTS-1, a member of this family, predominantly within the nucleus of mammary cells. Our main objective was to understand the mechanism of ADAMTS-1 translocation to the nucleus and its functional significance in this cellular compartment. Our investigation uncovered that nuclear ADAMTS-1 was present in cells exhibiting an epithelial phenotype, while cells of mesenchymal origin contained the protease in the cytoplasm. Moreover, disruption of ADAMTS-1 secretion, induced by Monensin treatment, resulted in its accumulation in the cytoplasm. Notably, our research indicated that alterations in the secretory pathways could influence the protease's compartmentalization. Additionally, experiments with conditioned medium from cells containing nuclear ADAMTS-1 demonstrated its internalization into the nucleus by HT-1080 cells and fibroblasts. Furthermore, heightened levels of ADAMTS-1 within the ECM reduced the migratory potential of mesenchymal cells. This highlights the potential significance of nuclear ADAMTS-1 as a critical component within the tumor microenvironment due to its functional activity in this specific cellular compartment.
Collapse
Affiliation(s)
- Suély V Silva
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Maíra A Lima
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
7
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Xia XD, Gill G, Lin H, Roth DM, Gu HM, Wang XJ, Su FY, Alabi A, Alexiou M, Zhang Z, Wang GQ, Graf D, Zhang DW. Global, but not chondrocyte-specific, MT1-MMP deficiency in adult mice causes inflammatory arthritis. Matrix Biol 2023; 122:10-17. [PMID: 37598898 DOI: 10.1016/j.matbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Membrane-type I metalloproteinase (MT1-MMP/MMP14) plays a key role in various pathophysiological processes, indicating an unaddressed need for a targeted therapeutic approach. However, mice genetically deficient in Mmp14 show severe defects in development and growth. To investigate the possibility of MT1-MMP inhibition as a safe treatment in adults, we generated global Mmp14 tamoxifen-induced conditional knockout (Mmp14kd) mice and found that MT1-MMP deficiency in adult mice resulted in severe inflammatory arthritis. Mmp14kd mice started to show noticeably swollen joints two weeks after tamoxifen administration, which progressed rapidly. Mmp14kd mice reached a humane endpoint 6 to 8 weeks after tamoxifen administration due to severe arthritis. Plasma TNF-α levels were also significantly increased in Mmp14kd mice. Detailed analysis revealed chondrocyte hypertrophy, synovial fibrosis, and subchondral bone remodeling in the joints of Mmp14kd mice. However, global conditional knockout of MT1-MMP in adult mice did not affect body weight, blood glucose, or plasma cholesterol and triglyceride levels. Furthermore, we observed substantial expression of MT1-MMP in the articular cartilage of patients with osteoarthritis. We then developed chondrocyte-specific Mmp14 tamoxifen-induced conditional knockout (Mmp14chkd) mice. Chondrocyte MT1-MMP deficiency in adult mice also caused apparent chondrocyte hypertrophy. However, Mmp14chkd mice did not exhibit synovial hyperplasia or noticeable arthritis, suggesting that chondrocyte MT1-MMP is not solely responsible for the onset of severe arthritis observed in Mmp14kd mice. Our findings also suggest that highly cell-type specific inhibition of MT1-MMP is required for its potential therapeutic use.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China; Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Govind Gill
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Haiming Lin
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Daniela M Roth
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiang-Jiang Wang
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Feng-Yi Su
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Adekunle Alabi
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Alexiou
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ziyang Zhang
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gui-Qing Wang
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China.
| | - Daniel Graf
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Da-Wei Zhang
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Kemberi M, Salmasi Y, Santamaria S. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease. Int J Mol Sci 2023; 24:12135. [PMID: 37569511 PMCID: PMC10419162 DOI: 10.3390/ijms241512135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) are complex disease states with high morbidity and mortality that pose significant challenges to early diagnosis. Patients with an aneurysm are asymptomatic and typically present to the emergency department only after the development of a dissection. The extracellular matrix (ECM) plays a crucial role in regulating the aortic structure and function. The histopathologic hallmark termed medial degeneration is characterised by smooth muscle cell (SMC) loss, the degradation of elastic and collagen fibres and proteoglycan (PG) accumulation. Covalently attached to the protein core of PGs are a number of glycosaminoglycan chains, negatively charged molecules that provide flexibility, compressibility, and viscoelasticity to the aorta. PG pooling in the media can produce discontinuities in the aortic wall leading to increased local stress. The accumulation of PGs is likely due to an imbalance between their synthesis by SMCs and decreased proteolysis by A Disintegrin-like and Metalloproteinase with Thrombospondin motifs (ADAMTS) proteoglycanases in the ECM. Mouse models of TAAD indicated that these proteases exert a crucial, albeit complex and not fully elucidated, role in this disease. This has led to a mounting interest in utilising ADAMTS proteoglycanases as biomarkers of TAAD. In this review, we discuss the role of ADAMTSs in thoracic aortic disease and their potential use in facilitating the clinical diagnosis of TAAD and disease progression.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
| | - Yousuf Salmasi
- Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK;
| | - Salvatore Santamaria
- Department of Biochemical and Physiological Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
10
|
Minns AF, Qi Y, Yamamoto K, Lee K, Ahnström J, Santamaria S. The C-terminal domains of ADAMTS1 contain exosites involved in its proteoglycanase activity. J Biol Chem 2023; 299:103048. [PMID: 36813235 PMCID: PMC10033314 DOI: 10.1016/j.jbc.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1) is a protease involved in fertilization, cancer, cardiovascular development, and thoracic aneurysms. Proteoglycans such as versican and aggrecan have been identified as ADAMTS1 substrates, and Adamts1 ablation in mice typically results in versican accumulation; however, previous qualitative studies have suggested that ADAMTS1 proteoglycanase activity is weaker than that of other family members such as ADAMTS4 and ADAMTS5. Here, we investigated the functional determinants of ADAMTS1 proteoglycanase activity. We found that ADAMTS1 versicanase activity is approximately 1000-fold lower than ADAMTS5 and 50-fold lower than ADAMTS4 with a kinetic constant (kcat/Km) of 3.6 × 103 M-1 s-1 against full-length versican. Studies on domain-deletion variants identified the spacer and cysteine-rich domains as major determinants of ADAMTS1 versicanase activity. Additionally, we confirmed that these C-terminal domains are involved in the proteolysis of aggrecan as well as biglycan, a small leucine-rich proteoglycan. Glutamine scanning mutagenesis of exposed positively charged residues on the spacer domain loops and loop substitution with ADAMTS4 identified clusters of substrate-binding residues (exosites) in β3-β4 (R756Q/R759Q/R762Q), β9-β10 (residues 828-835), and β6-β7 (K795Q) loops. This study provides a mechanistic foundation for understanding the interactions between ADAMTS1 and its proteoglycan substrates and paves the way for development of selective exosite modulators of ADAMTS1 proteoglycanase activity.
Collapse
Affiliation(s)
- Alexander Frederick Minns
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Yawei Qi
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Karen Lee
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
11
|
Zhang JM, Au DT, Sawada H, Franklin MK, Moorleghen JJ, Howatt DA, Wang P, Aicher BO, Hampton B, Migliorini M, Ni F, Mullick AE, Wani MM, Ucuzian AA, Lu HS, Muratoglu SC, Daugherty A, Strickland DK. LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI Insight 2023; 8:e164751. [PMID: 36472907 PMCID: PMC9977308 DOI: 10.1172/jci.insight.164751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.
Collapse
Affiliation(s)
- Jackie M Zhang
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dianaly T Au
- Center for Vascular and Inflammatory Diseases and
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Pengjun Wang
- Saha Cardiovascular Research Center and Saha Aortic Center and
| | - Brittany O Aicher
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Fenge Ni
- Center for Vascular and Inflammatory Diseases and
| | | | | | - Areck A Ucuzian
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Vascular Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|