1
|
Srinivasan S, Sherwood DR. The life cycle of type IV collagen. Matrix Biol 2025:S0945-053X(25)00037-X. [PMID: 40306374 DOI: 10.1016/j.matbio.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Type IV collagen is a large triple helical molecule that forms a covalently cross-linked network within basement membranes (BMs). Type IV collagen networks play key roles in mechanically supporting tissues, shaping organs, filtering blood, and cell signaling. To ensure tissue health and function, all aspects of the type IV collagen life cycle must be carried out accurately. However, the large triple helical structure and complex life-cycle of type IV collagen, poses many challenges to cells and tissues. Type IV collagen predominantly forms heterotrimers and to ensure proper construction, expression of the distinct α-chains that comprise a heterotrimer needs tight regulation. The α-chains must also be accurately modified by several enzymes, some of which are specific to collagens, to build and stabilize the triple helical trimer. In addition, type IV collagen is exceptionally long (400nm) and thus the packaging and trafficking of the triple helical trimer from the ER to the Golgi must be modified to accommodate the large type IV collagen molecule. During ER-to-Golgi trafficking, as well as during secretion and transport in the extracellular space type IV collagen also associates with specific chaperone molecules that maintain the structure and solubility of collagen IV. Type IV collagen trimers are then delivered to BMs from local and distant sources where they are integrated into BMs by interactions with cell surface receptors and many diverse BM resident proteins. Within BMs type IV collagen self-associates into a network and is crosslinked by BM resident enzymes. Finally, homeostatic type IV collagen levels in BMs are maintained by poorly understood mechanisms involving proteolysis and endocytosis. Here, we provide an overview of the life cycle of collagen IV, highlighting unique mechanisms and poorly understood aspects of type IV collagen regulation.
Collapse
Affiliation(s)
- Sandhya Srinivasan
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Stricker AM, Hutson MS, Page-McCaw A. Piezo-dependent surveillance of matrix stiffness generates transient cells that repair the basement membrane. Dev Cell 2025:S1534-5807(25)00116-9. [PMID: 40081371 DOI: 10.1016/j.devcel.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/14/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Basement membranes are extracellular matrix sheets separating tissue layers and providing mechanical support, and collagen IV (Col4) is their most abundant structural protein. Although basement membranes are repaired after damage, little is known about repair, including whether and how damage is detected, what cells repair the damage, and how repair is controlled to avoid fibrosis. Using the intestinal basement membrane of adult Drosophila as a model, we show that after basement membrane damage, there is a sharp increase in enteroblasts transiently expressing Col4, termed "matrix mender" cells. Enteroblast-derived Col4 is specifically required for matrix repair. The increase in matrix mender cells requires the mechanosensitive ion channel Piezo, expressed in intestinal stem cells. Matrix menders are induced by the loss of matrix stiffness, as specifically inhibiting Col4 crosslinking is sufficient for Piezo-dependent induction of matrix mender cells. Our data suggest that epithelial stem cells control basement membrane integrity by monitoring stiffness.
Collapse
Affiliation(s)
- Aubrie M Stricker
- Department of Cell and Developmental Biology, Center for Matrix Biology, Program in Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - M Shane Hutson
- Department of Physics and Astronomy, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Center for Matrix Biology, Program in Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
3
|
Stricker AM, Hutson MS, Page-McCaw A. Piezo-dependent surveillance of matrix stiffness generates transient cells that repair the basement membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573147. [PMID: 38187749 PMCID: PMC10769369 DOI: 10.1101/2023.12.22.573147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Basement membranes are extracellular matrix sheets separating tissue layers and providing mechanical support, and Collagen IV (Col4) is their most abundant protein. Although basement membranes are repaired after damage, little is known about repair, including whether and how damage is detected, what cells repair the damage, and how repair is controlled to avoid fibrosis. Using the intestinal basement membrane of adult Drosophila as a model, we show that after basement membrane damage, there is a sharp increase in enteroblasts transiently expressing Col4, or "matrix mender" cells. Enteroblast-derived Col4 is specifically required for matrix repair. The increase in matrix mender cells requires the mechanosensitive ion channel Piezo, expressed in intestinal stem cells. Matrix menders are induced by the loss of matrix stiffness, as specifically inhibiting Col4 crosslinking is sufficient for Piezo-dependent induction of matrix mender cells. Our data suggest that epithelial stem cells control basement membrane integrity by monitoring stiffness.
Collapse
Affiliation(s)
- Aubrie M. Stricker
- Department of Cell and Developmental Biology, Center for Matrix Biology, Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - M. Shane Hutson
- Department of Physics and Astronomy, Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Center for Matrix Biology, Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
5
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Wilkie IC. Basement Membranes, Brittlestar Tendons, and Their Mechanical Adaptability. BIOLOGY 2024; 13:375. [PMID: 38927255 PMCID: PMC11200632 DOI: 10.3390/biology13060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Basement membranes (BMs) are thin layers of extracellular matrix that separate epithelia, endothelia, muscle cells, and nerve cells from adjacent interstitial connective tissue. BMs are ubiquitous in almost all multicellular animals, and their composition is highly conserved across the Metazoa. There is increasing interest in the mechanical functioning of BMs, including the involvement of altered BM stiffness in development and pathology, particularly cancer metastasis, which can be facilitated by BM destabilization. Such BM weakening has been assumed to occur primarily through enzymatic degradation by matrix metalloproteinases. However, emerging evidence indicates that non-enzymatic mechanisms may also contribute. In brittlestars (Echinodermata, Ophiuroidea), the tendons linking the musculature to the endoskeleton consist of extensions of muscle cell BMs. During the process of brittlestar autotomy, in which arms are detached for the purpose of self-defense, muscles break away from the endoskeleton as a consequence of the rapid destabilization and rupture of their BM-derived tendons. This contribution provides a broad overview of current knowledge of the structural organization and biomechanics of non-echinoderm BMs, compares this with the equivalent information on brittlestar tendons, and discusses the possible relationship between the weakening phenomena exhibited by BMs and brittlestar tendons, and the potential translational value of the latter as a model system of BM destabilization.
Collapse
Affiliation(s)
- Iain C Wilkie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
7
|
Cruz LC, Habibovic A, Dempsey B, Massafera MP, Janssen-Heininger YMW, Lin MCJ, Hoffman ET, Weiss DJ, Huang SK, van der Vliet A, Meotti FC. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biol 2024; 71:103102. [PMID: 38430684 PMCID: PMC10912723 DOI: 10.1016/j.redox.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Peroxidasin (PXDN) is a secreted heme peroxidase that catalyzes the oxidative crosslinking of collagen IV within the extracellular matrix (ECM) via intermediate hypobromous acid (HOBr) synthesis from hydrogen peroxide and bromide, but recent findings have also suggested alternative ECM protein modifications by PXDN, including incorporation of bromide into tyrosine residues. In this work, we sought to identify the major target proteins for tyrosine bromination by HOBr or by PXDN-mediated oxidation in ECM from mouse teratocarcinoma PFHR9 cells. We detected 61 bromotyrosine (BrY)-containing peptides representing 23 proteins in HOBr-modified ECM from PFHR9 cells, among which laminins displayed the most prominent bromotyrosine incorporation. Moreover, we also found that laminin α1, laminin β1, and tubulointerstitial nephritis antigen-like (TINAGL1) contained BrY in untreated PFHR9 cells, which depended on PXDN. We extended these analyses to lung tissues from both healthy mice and mice with experimental lung fibrosis, and in lung tissues obtained from human subjects. Analysis of ECM-enriched mouse lung tissue extracts showed that 83 ECM proteins were elevated in bleomycin-induced fibrosis, which included various collagens and laminins, and PXDN. Similarly, mRNA and protein expression of PXDN and laminin α/β1 were enhanced in fibrotic mouse lung tissues, and also in mouse bone-marrow-derived macrophages or human fibroblasts stimulated with transforming growth factor β1, a profibrotic growth factor. We identified 11 BrY-containing ECM proteins, including collagen IV α2, collagen VI α1, TINAGL1, and various laminins, in both healthy and mouse fibrotic lung tissues, although the relative extent of tyrosine bromination of laminins was not significantly increased during fibrosis. Finally, we also identified 7 BrY-containing ECM proteins in human lung tissues, again including collagen IV α2, collagen VI α1, and TINAGL1. Altogether, this work demonstrates the presence of several bromotyrosine-modified ECM proteins, likely involving PXDN, even in normal lung tissues, suggesting a potential biological function for these modifications.
Collapse
Affiliation(s)
- Litiele Cezar Cruz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil; Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA
| | - Bianca Dempsey
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Mariana P Massafera
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Miao-Chong Joy Lin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA
| | - Evan T Hoffman
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Daniel J Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, VT, USA.
| | - Flavia C Meotti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|