1
|
Marincaș L, Turdean GL, Toșa M, Kovács Z, Kovács B, Barabás R, Farkas NI, Bizo L. Hydroxyapatite and Silicon-Modified Hydroxyapatite as Drug Carriers for 4-Aminopyridine. CRYSTALS 2021; 11:1124. [DOI: 10.3390/cryst11091124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adsorption and desorption properties of nano-hydroxyapatite (HAP) and silicon-modified hydroxyapatite (Si–HAP) were investigated with 4-aminopyridine (fampridine-4AP). The novelty of this research is the investigation of the suitability of the previously mentioned carriers for drug-delivery of 4AP. UV-VIS spectrophotometric results showed that the presence of silicon in the carrier did not significantly affect its adsorption capacity. The success of the adsorption was confirmed by thermal analysis (TG/DTA), scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD). Drug release experiments, performed in simulated body fluid (SBF), revealed a drug release from Si–HAP that was five times slower than HAP, explained by the good chemical bonding between the silanol groups of the carrier and the 4AP functional groups. The electrochemical measurements showed a value of the polarization resistance of the charge transfer (Rct) more than five times smaller in the case of Si–HAP coating loaded with 4AP, so the charge transfer process was hindered. The electrochemical impedance results revealed that electron transfer was inhibited in the presence of 4AP, in concordance with the previously mentioned strong bonds. The silicon substitution in HAP leads to good chemical bonding with the drug and a slow release, respectively.
Collapse
Affiliation(s)
- Laura Marincaș
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Graziella Liana Turdean
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Monica Toșa
- Enzymology and Applied Biocatalysis Research Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Zsolt Kovács
- Department of Biochemistry and Environmental Chemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu 38 Street, 540142 Târgu Mureș, Romania
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu 38 Street, 540142 Târgu Mureș, Romania
| | - Réka Barabás
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Noémi-Izabella Farkas
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| | - Liliana Bizo
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Laabd M, Brahmi Y, El Ibrahimi B, Hsini A, Toufik E, Abdellaoui Y, Abou Oualid H, El Ouardi M, Albourine A. A novel mesoporous Hydroxyapatite@Montmorillonite hybrid composite for high-performance removal of emerging Ciprofloxacin antibiotic from water: Integrated experimental and Monte Carlo computational assessment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Yang J, Zhang Z, Pang W, Chen H, Yan G. Polyamidoamine dendrimers functionalized magnetic carbon nanotubes as an efficient adsorbent for the separation of flavonoids from plant extraction. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Barabas R, Rigo M, Sarkozi M, Hoaghia MA, Cadar O. HYDROXYAPATITE - CARBON NANOTUBE COMPOSITES FOR DRUG DELIVERY APPLICATIONS. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Arul Xavier S, U V. Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity. Colloids Surf B Biointerfaces 2018; 171:186-196. [PMID: 30031303 DOI: 10.1016/j.colsurfb.2018.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/28/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023]
Abstract
Coatings using functionalized multi-walled carbon nanotubes (f-MWCNTs)/hydroxyapatite (HAP) on 316 L Stainless Steel by electrodeposition at the parameter of "-1.5 V" for 30 min. with three electrode set-up configuration and optimization of various concentrations of f-MWCNTs from 1 to 5% were done to improve the coating characteristics for future biomedical applications. The obtained coatings were characterized by Fourier Transformed-Infra Red spectroscopy (FT-IR) and X-ray diffractometer (XRD) to reveal the phase formation in the composites. With various additions of f-MWCNTs, the HAP phase was found to be retained. The growth of HAP on f-MWCNTs was analyzed by High-resolution Transmission Electron Microscope (HR-TEM) and the morphology of composite was found to be of the needle and flower-like particles. To understand the corrosion resistance effect of the developed HAP/f-MWCNTs composite in SBF, electrochemical investigations were carried out using Impedance and Tafel polarization analysis. From the results, it was observed that the coatings have enhanced corrosion resistance behavior and bioactivity. In addition, the Vickers Hardness study proved that the prepared HAP/fMWCNTs composite coating was found to have improved hardness value of (Hv) 390.2 ± 8.0. Thus, the electrodeposited composite coating on 316 L SS substrate can be effectively deployed for biomedical applications.
Collapse
Affiliation(s)
- Stango Arul Xavier
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632 014. Tamil Nadu, India
| | - Vijayalakshmi U
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632 014. Tamil Nadu, India.
| |
Collapse
|