1
|
Balat A, Gürel HG, Ordueri NE. In vitro evaluation of cytotoxicity of fixed functional appliances. BMC Oral Health 2025; 25:375. [PMID: 40082830 PMCID: PMC11905523 DOI: 10.1186/s12903-025-05755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the cytotoxicity of fixed functional appliances that are commonly used in the treatment of Class II malocclusion caused by mandibular retrognathia, using the MTT cell viability assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (Sigma Chemical Co., Milan, Italy). MATERIALS AND METHODS The cytotoxicity of five different fixed functional appliances commonly used in orthodontic treatments was assessed. The appliances evaluated included Jasper Jumper (American Orthodontics, Wisconsin, USA), Power Scope (American Orthodontics, Wisconsin, USA), Herbst (American Orthodontics, Wisconsin, USA), Forsus™ Fatigue Resistant Device Kits (3 M, MN, USA), and Twin Force Bite Corrector (Henry Schein Orthodontics, California, USA). Assays were conducted using one appliance from each type, resulting in a total of seven groups. Cytotoxicity testing was performed using the MTT assay on a human gingival fibroblast (HGF) cell line. Data analysis was conducted using the Kruskal-Wallis test with a significance level of p = 0.05. RESULTS All appliances demonstrated cell viability rates exceeding 90%, categorizing them as non-cytotoxic under ISO 10993-5 standards. Herbst exhibited the highest proliferation index (2.62 ± 1.13), while Power Scope (2.05 ± 1.06) and Jasper Jumper (1.90 ± 1.23) showed the lowest indices. Despite these variations, statistical analysis revealed no significant cytotoxic effects when compared to the control group (p > 0.05). All appliances were confirmed as biologically safe for cell health. CONCLUSION The findings demonstrate that all evaluated appliances exhibit a biocompatible interaction with HGF cells, with no evidence of adverse cytotoxic effects. These results support the safe clinical use of these fixed functional appliances in orthodontic treatment.
Collapse
Affiliation(s)
- Alper Balat
- Department of Orthodontics, Biruni University Faculty of Dentistry, Istanbul, Turkey.
- Department of Orthodontics, Biruni University Faculty of Dentistry, Istanbul, Turkey.
| | - Hakan Gürcan Gürel
- Department of Orthodontics, Biruni University Faculty of Dentistry, Istanbul, Turkey
| | - Nazlı Ece Ordueri
- Department of Histology and Embryology, Biruni University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Tu Y, Peng W, Chen L, Xiao X. The Effects of Nitrogen Alloying on the Microstructure and Properties of Cu-Bearing Antimicrobial Stainless Steel. MATERIALS (BASEL, SWITZERLAND) 2024; 18:26. [PMID: 39795669 PMCID: PMC11721520 DOI: 10.3390/ma18010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
In this study, a novel Cu-bearing 304 stainless steel doped with 4.0 wt.% Cu (304-Cu SS) was developed, and the effects of nitrogen microalloying (304N-Cu SS) and heat treatment on mechanical, antibacterial, and corrosion properties were investigated. It was found that when aging at 700 °C, the Vickers hardness and strength of the 304N-Cu SS first significantly increased with increasing aging time up to 4 h and then slowly decreased with further increase in aging time. The best combination of strength and ductility, namely, a yield strength of 319 MPa, ultimate tensile strength of 657 MPa, and elongation to fracture of 47.0%, was achieved in the 304N-Cu SS after aging at 700 °C for 6 h. Moreover, the antibacterial and corrosion rates of the newly developed 304N-Cu SS reached 99.67% and 0.0032 g·m-2h-1, surpassing those of 304-Cu SS by 0.38% and 9.4%, respectively. These enhancements in the mechanical, antibacterial, and corrosion properties were attributed to the precipitation of high-density nanoscale Cu-rich precipitates during aging. Our results demonstrate that nitrogen microalloying is an effective metallurgical method for the future development of new antibacterial austenitic stainless steels with simultaneously enhanced mechanical, antibacterial, and corrosion properties for direct drinking water distribution systems.
Collapse
Affiliation(s)
- Yuguo Tu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; (Y.T.); (L.C.)
- Jiangsu Shanyuan Group Co., Ltd., Taizhou 225722, China
| | - Wei Peng
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; (Y.T.); (L.C.)
| | - Liujie Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; (Y.T.); (L.C.)
| | - Xueshan Xiao
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; (Y.T.); (L.C.)
| |
Collapse
|
3
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
4
|
Wu N, Gao H, Wang X, Pei X. Surface Modification of Titanium Implants by Metal Ions and Nanoparticles for Biomedical Application. ACS Biomater Sci Eng 2023; 9:2970-2990. [PMID: 37184344 DOI: 10.1021/acsbiomaterials.2c00722] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Implant surface modification can improve osseointegration and reduce peri-implant inflammation. Implant surfaces are modified with metals because of their excellent mechanical properties and significant functions. Metal surface modification is divided into metal ions and nanoparticle surface modification. These two methods function by adding a finishing metal to the surface of the implant, and both play a role in promoting osteogenic, angiogenic, and antibacterial properties. Based on this, the nanostructural surface changes confer stronger antibacterial and cellular affinity to the implant surface. The current paper reviews the forms, mechanisms, and applications of nanoparticles and metal ion modifications to provide a foundation for the surface modification of implants.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite? Int J Mol Sci 2023; 24:ijms24054336. [PMID: 36901766 PMCID: PMC10001746 DOI: 10.3390/ijms24054336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Due to the questionable durability of dental restorations, there is a need to increase the lifetime of composite restoration. The present study used diethylene glycol monomethacrylate/4,4'-methylenebis(cyclohexyl isocyanate) (DEGMMA/CHMDI), diethylene glycol monomethacrylate/isophorone diisocyanate (DEGMMA/IPDI) monomers, and bis(2,6-diisopropylphenyl)carbodiimide (CHINOX SA-1) as modifiers of a polymer matrix (40 wt% urethane dimethacrylate (UDMA), 40 wt% bisphenol A ethoxylateddimethacrylate (bis-EMA), and 20 wt% triethyleneglycol dimethacrylate (TEGDMA)). Flexural strength (FS), diametral tensile strength (DTS), hardness (HV), sorption, and solubility were determined. To assess hydrolytic stability, the materials were tested before and after two aging methods (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). The aging protocol resulted in no noticeable change (median values were the same as or higher than the control value) or a decrease in the DTS value from 4 to 28%, and a decrease in the FS value by 2 to 14%. The hardness values after aging were more than 60% lower than those of the controls. The used additives did not improve the initial (control) properties of the composite material. The addition of CHINOX SA-1 improved the hydrolytic stability of composites based on UDMA/bis-EMA/TEGDMA monomers, which could potentially extend the service life of the modified material. Extended studies are needed to confirm the possible use of CHINOX SA-1 as an antihydrolysis agent in dental composites.
Collapse
|
6
|
An Experimental Anodized and Low-Pressure Oxygen Plasma-Treated Titanium Dental Implant Surface-Preliminary Report. Int J Mol Sci 2023; 24:ijms24043603. [PMID: 36835015 PMCID: PMC9958761 DOI: 10.3390/ijms24043603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Chemical composition and physical parameters of the implant surface, such as roughness, regulate the cellular response leading to implant bone osseointegration. Possible implant surface modifications include anodization or the plasma electrolytic oxidation (PEO) treatment process that produces a thick and dense oxide coating superior to normal anodic oxidation. Experimental modifications with Plasma Electrolytic Oxidation (PEO) titanium and titanium alloy Ti6Al4V plates and PEO additionally treated with low-pressure oxygen plasma (PEO-S) were used in this study to evaluate their physical and chemical properties. Cytotoxicity of experimental titanium samples as well as cell adhesion to their surface were assessed using normal human dermal fibroblasts (NHDF) or L929 cell line. Moreover, the surface roughness, fractal dimension analysis, and texture analysis were calculated. Samples after surface treatment have substantially improved properties compared to the reference SLA (sandblasted and acid-etched) surface. The surface roughness (Sa) was 0.59-2.38 µm, and none of the tested surfaces had cytotoxic effect on NHDF and L929 cell lines. A greater cell growth of NHDF was observed on the tested PEO and PEO-S samples compared to reference SLA sample titanium.
Collapse
|
7
|
Kumrular B, Cicek O, Dağ İE, Avar B, Erener H. Evaluation of the Corrosion Resistance of Different Types of Orthodontic Fixed Retention Appliances: A Preliminary Laboratory Study. J Funct Biomater 2023; 14:jfb14020081. [PMID: 36826880 PMCID: PMC9962763 DOI: 10.3390/jfb14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
(i) Objective: The present study aimed to compare the electrochemical corrosion resistance of six different types of fixed lingual retainer wires used as fixed retention appliances in an in vitro study. (ii) Methods: In the study, two different Ringer solutions, with pH 7 and pH 3.5, were used. Six groups were formed with five retainer wires in each group. In addition, 3-braided stainless steel, 6-braided stainless steel, Titanium Grade 1, Titanium Grade 5, Gold, and Dead Soft retainer wires were used. The corrosion current density (icorr), corrosion rate (CR), and polarization resistance (Rp) were determined from the Tafel polarization curves. (iii) Results: The corrosion current density of the Gold retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). The corrosion rate of the Dead Soft retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). The polarization resistance of the Titanium Grade 5 retainer group was statistically higher than the other retainer groups in both solutions (p < 0.05). As a result of Scanning Electron Microscope (SEM) images, pitting corrosion was not observed in the Titanium Grade 1, Titanium Grade 5 and Gold retainer groups, while pitting corrosion was observed in the other groups. (iv) Conclusion: From a corrosion perspective, although the study needs to be evaluated in vivo, the Titanium Grade 5 retainer group included is in this in vitro study may be more suitable for clinical use due to its high electrochemical corrosion resistance and the lack of pitting corrosion observed in the SEM images.
Collapse
Affiliation(s)
- Busra Kumrular
- Department of Orthodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Orhan Cicek
- Department of Orthodontics, Faculty of Dentistry, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
- Correspondence: ; Tel.: +90-372-261-3557; Fax: +90-372-261-3603
| | - İlker Emin Dağ
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Baris Avar
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
| | - Hande Erener
- Department of Orthodontics, Faculty of Dentistry, Tekirdag Namık Kemal University, Tekirdağ 59030, Turkey
| |
Collapse
|
8
|
Recent Advancements in Metallic Drug-Eluting Implants. Pharmaceutics 2023; 15:pharmaceutics15010223. [PMID: 36678852 PMCID: PMC9862589 DOI: 10.3390/pharmaceutics15010223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past decade, metallic drug-eluting implants have gained significance in orthopedic and dental applications for controlled drug release, specifically for preventing infection associated with implants. Recent studies showed that metallic implants loaded with drugs were substituted for conventional bare metal implants to achieve sustained and controlled drug release, resulting in a desired local therapeutic concentration. A number of secondary features can be provided by the incorporated active molecules, including the promotion of osteoconduction and angiogenesis, the inhibition of bacterial invasion, and the modulation of host body reaction. This paper reviews recent trends in the development of the metallic drug-eluting implants with various drug delivery systems in the past three years. There are various types of drug-eluting implants that have been developed to meet this purpose, depending on the drug or agents that have been loaded on them. These include anti-inflammatory drugs, antibiotics agents, growth factors, and anti-resorptive drugs.
Collapse
|
9
|
Surface Modification of Additively Fabricated Titanium-Based Implants by Means of Bioactive Micro-Arc Oxidation Coatings for Bone Replacement. J Funct Biomater 2022; 13:jfb13040285. [PMID: 36547545 PMCID: PMC9781821 DOI: 10.3390/jfb13040285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them-oxide, another two-calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (including histological analysis). These results demonstrate superior biological properties compared to unmodified titanium surfaces. The ratio of calcium and phosphorus in coatings, as well as their phase composition, have a great influence on the biological response of the coatings.
Collapse
|
10
|
Mohammed NB, Daily ZA, Alsharbaty MH, Abullais SS, Arora S, Lafta HA, Jalil AT, Almulla AF, Ramírez-Coronel AA, Aravindhan S, Bathaei MS. Effect of PMMA sealing treatment on the corrosion behavior of plasma electrolytic oxidized titanium dental implants in fluoride-containing saliva solution. MATERIALS RESEARCH EXPRESS 2022; 9:125401. [DOI: 10.1088/2053-1591/aca7b5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Abstract
Titanium (Ti) and its alloys are widely used as dental implant materials because of their high mechanical properties, biocompatibility, and corrosion resistance. This research was undertaken to study the effect of polymethyl-methacrylate (PMMA) sealing layer on the corrosion performance of plasma electrolytic oxidation (PEO)-coated titanium-based dental implants in pure saliva and fluoride-containing saliva solutions. The phase structure, chemical composition, and microstructure of coatings were investigated via x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy, respectively. The corrosion behavior of the samples was evaluated by open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy tests. The deposition of the PMMA layer on the PEO-coated Ti dental implants was found to effectively seal the micropores and microcracks of the TiO2 coatings and block corrosive ions’ penetration routes through the coating. Thereby, the results indicated that better corrosion performance was observed when the PMMA layer is applied on PEO-coated Ti dental implants than on the simple PEO coatings.
Collapse
|
11
|
Wang Y, Teng W, Zhang Z, Ma S, Jin Z, Zhou X, Ye Y, Zhang C, Gou Z, Yu X, Ye Z, Ren Y. Remote Eradication of Bacteria on Orthopedic Implants via Delayed Delivery of Polycaprolactone Stabilized Polyvinylpyrrolidone Iodine. J Funct Biomater 2022; 13:jfb13040195. [PMID: 36278664 PMCID: PMC9589933 DOI: 10.3390/jfb13040195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria-associated late infection of the orthopedic devices would further lead to the failure of the implantation. However, present ordinary antimicrobial strategies usually deal with early infection but fail to combat the late infection of the implants due to the burst release of the antibiotics. Thus, to fabricate long-term antimicrobial (early antibacterial, late antibacterial) orthopedic implants is essential to address this issue. Herein, we developed a sophisticated MAO-I2-PCLx coating system incorporating an underlying iodine layer and an upper layer of polycaprolactone (PCL)-controlled coating, which could effectively eradicate the late bacterial infection throughout the implantation. Firstly, micro-arc oxidation was used to form a microarray tubular structure on the surface of the implants, laying the foundation for iodine loading and PCL bonding. Secondly, electrophoresis was applied to load iodine in the tubular structure as an efficient bactericidal agent. Finally, the surface-bonded PCL coating acts as a controller to regulate the release of iodine. The hybrid coatings displayed great stability and control release capacity. Excellent antibacterial ability was validated at 30 days post-implantation via in vitro experiments and in vivo rat osteomyelitis model. Expectedly, it can become a promising bench-to-bedside strategy for current infection challenges in the orthopedic field.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Wangsiyuan Teng
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Zengjie Zhang
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Siyuan Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Zhihui Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
| | - Xingzhi Zhou
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Chongda Zhang
- New York University Medical Center, New York University, New York, NY 10016, USA
| | - Zhongru Gou
- Bio-Nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaohua Yu
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Zhaoming Ye
- Department of Orthopedics, Centre for Orthopaedic Research, Orthopedics Research Institute of Zhejiang University, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Correspondence: (Z.Y.); (Y.R.); Tel.: +86-571-8778-3777 (Z.Y.); +86-027-8804-1911 (ext. 83380) (Y.R.)
| | - Yijun Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Correspondence: (Z.Y.); (Y.R.); Tel.: +86-571-8778-3777 (Z.Y.); +86-027-8804-1911 (ext. 83380) (Y.R.)
| |
Collapse
|
12
|
Huang T, Tu C, Zhou T, Yu Z, Wang Y, Yu Q, Yu K, Jiang Z, Gao C, Yang G. Antifouling poly(PEGMA) grafting modified titanium surface reduces osseointegration through resisting adhesion of bone marrow mesenchymal stem cells. Acta Biomater 2022; 153:585-595. [PMID: 36167235 DOI: 10.1016/j.actbio.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/01/2022]
Abstract
As an alternative strategy to achieve the desired bone augmentation, tenting screw technology (TST) has considerably broadened the indications for implant treatment. Titanium tenting screws are typically used in TST to maintain the space for bone regeneration. However, a high degree of osteogenic integration complicate titanium tenting screw removal and impact the bone healing micro-environment. Previous efforts have been focused on modifying titanium surfaces to enhance osseointegration while ignoring the opposite process. Due to the vital role of bone marrow mesenchymal stem cells (BMSCs) in bone regeneration, it might be feasible to reduce osseointegration around titanium tenting screws by resisting the adhesion of BMSCs. Herein, poly(ethylene glycol)methyl ether methacrylate (poly(PEGMA)) with an optimal length of PEG chain was incorporated with a Ti surface in terms of surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The cell apoptosis analysis showed that the new surface would not induce the apoptosis of BMSCs. Then, the adhesive and proliferative behaviors of BMSCs on the surface were analyzed which indicated that the poly(PEGMA) surface could inhibit the proliferation of BMSCs through resisting the adhesion process. Furthermore, in vivo experiments revealed the presence of the poly(PEGMA) on the surface resulted in a lower bone formation and osseointegration compared with the Ti group. Collectively, this dense poly(PEGMA) surface of Ti may serve as a promising material for clinical applications in the future. STATEMENT OF SIGNIFICANCE: The significance of this research includes: The poly(ethylene glycol)methyl ether methacrylate (poly(PEGMA)) with an optimal length of PEG chain was grafted onto a Ti surface by surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP). The PEGMA surface could reduce the osteogenic integration by preventing the adhesion of cells, resulting in a lower pullout force of the modified implant and thereby desirable and feasible applications in dental surgery.
Collapse
Affiliation(s)
- Tingben Huang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhou Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yuchen Wang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiong Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ke Yu
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhiwei Jiang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Guoli Yang
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China; Department of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
13
|
Facile and Eco-Friendly Preparation of Mild Steel Based Superhydrophobic Surfaces without Chemical Modifications. COATINGS 2022. [DOI: 10.3390/coatings12060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The fabrication of superhydrophobic coatings on mild steel has attracted considerable attention. However, some methods are cumbersome and unsuitable for large-scale preparation, limiting industrial applications. Furthermore, the extensive use of fluorinated compounds to achieve low surface energy is not environmentally friendly. This paper proposed a facile method based on electrodeposition and annealing to prepare mild steel-based superhydrophobic surfaces without chemical modifications. Subsequently, SEM images were analyzed, and it was observed that the plating parameter (current and time) significantly affected surface morphology. At optimum process parameters, a rough surface with a multi-level structure was formed on the plated surface, contributing to superhydrophobic properties. XPS, EDS, and XRD were utilized to analyze surface composition. The results indicated the presence of copper oxides, zinc oxides, and a large number of hydrocarbons on the prepared superhydrophobic surface. These transition metal oxides on the surface adsorbed hydrocarbons in the air during the annealing process, which lowered the surface energy. Combined with the obtained multi-level morphology, a superhydrophobic surface was achieved. Finally, the corrosion behavior was evaluated in 3.5 wt% NaCl solution by AC impedance spectroscopy. Results showed that the obtained superhydrophobic surface, compared with the untreated coating and the steel substrate, showed a substantial improvement in corrosion resistance. A mild steel-based superhydrophobic surface with a contact angle greater than 150 degrees and excellent corrosion resistance was finally obtained. We hope this study will facilitate the industrial preparation of superhydrophobic coatings, especially in marine engineering, since this method does not require complex processes or expensive equipment and does not require fluorinated substances.
Collapse
|