1
|
Yang J, Kim K, Liu Y, Luo X, Ma C, Man W, Zhao Y, Cao Z, Hu P, Chen J, Wang Y, Sun X, Zhao L, Wang G, Yang K, Wang X. 3D bioprinted dynamic bioactive living construct enhances mechanotransduction-assisted rapid neural network self-organization for spinal cord injury repair. Bioact Mater 2025; 46:531-554. [PMID: 39886605 PMCID: PMC11780150 DOI: 10.1016/j.bioactmat.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025] Open
Abstract
Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment. To address this, a dynamic bioactive bioink is designed to provide adaptable biomechanics and instructive biochemical cues, specifically tailored for the fate commitment of NSCs, through incorporating reversible Schiff-base bonds and bioactive motifs, N-cadherin-mimicking and BDNF-mimicking peptides. We demonstrate that the dynamic properties of 3D bioprinted living fibers alleviate the mechanical confinement on NSCs and significantly enhance their mechanosensing, spreading, migration, and matrix remodeling within the 3D matrix. Additionally, the inclusion of N-cadherin-mimicking and BDNF-mimicking peptides further enhances cells' ability to sense and respond to mechanical and neurotrophic cues provided by the surrounding matrix, which accelerates the self-organization of a functional neural network within the 3D bioprinted construct, leading to significant motor and sensory function recovery in a rat complete spinal cord injury model. This work underscores the critical role of precisely designing cell-instructive bioinks for the advanced functionality of 3D bioprinted living constructs in neural regeneration.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kunkoo Kim
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yaosai Liu
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiaobin Luo
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Chao Ma
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yating Zhao
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Center for Biomaterials and Regenerative Medicine, Wuzhen Laboratory, Tongxiang 314500, China
| | - Peilun Hu
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Junlin Chen
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- Department of Orthopedics, Peking University First Hospital, Beijing 100034, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Guihuai Wang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Kaiyuan Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|