1
|
Marini AX, Tomaraei GN, Weinbaum JS, Bedewy M, Vorp DA. Chemical Conjugation of Iron Oxide Nanoparticles for the Development of Magnetically Directable Silk Particles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8901-8913. [PMID: 39900356 PMCID: PMC11826889 DOI: 10.1021/acsami.4c17536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Magnetically directable materials containing iron oxide nanoparticles (IONPs) have been utilized for a variety of medical applications, including localized drug delivery. Regenerated silk fibroin (RSF) has also been used in numerous regenerative medicine and drug delivery applications, given its biocompatibility and tunable properties. In this work, we explored the hypothesis that chemically conjugating IONPs to RSF to anchor the IONPs to silk microparticles would provide better magnetic guidance than nonconjugated IONPs untethered to silk microparticles. IONPs were fabricated using a coprecipitation method and conjugated with glutathione (GSH) prior to mixing with RSF. IONPs incorporated into RSF were mixed with potassium phosphate buffer to fabricate microparticles. IONPs with and without GSH were characterized for particle size, shape, morphology, GSH conjugation efficiency, and composition. Silk iron microparticles (SIMPs) were also characterized for particle size, shape, and composition and tested for stability, degradation properties, magnetic movability, and cytotoxicity. IONPs demonstrated a uniform size distribution and spherical morphology. Conjugation of IONPs with GSH was verified through changes in the X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) spectra. IONPs and RSF were able to be chemically conjugated and fabricated into SIMPs, which demonstrated a spherical and porous morphology. FTIR revealed an increased β-sheet content in SIMPs, suggesting that the IONPs may be inducing conformational changes in the silk fibroin. SIMPs showed stability up to 4 weeks in ultrapure water and rapid enzymatic degradation within 24 h. SIMPs were able to be moved magnetically through solution and through a hydrogel and were not cytotoxic.
Collapse
Affiliation(s)
- Ande X. Marini
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Golnaz N. Tomaraei
- Department
of Industrial Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Justin S. Weinbaum
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department
of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mostafa Bedewy
- Department
of Industrial Engineering, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - David A. Vorp
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Cardiothoracic Surgery, University of
Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Clinical
& Translational Sciences Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Magee Women’s
Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Lorentz KL, Marini AX, Bruk LA, Gupta P, Mandal BB, DiLeo MV, Weinbaum JS, Little SR, Vorp DA. Mesenchymal Stem Cell-Conditioned Media-Loaded Microparticles Enhance Acute Patency in Silk-Based Vascular Grafts. Bioengineering (Basel) 2024; 11:947. [PMID: 39329689 PMCID: PMC11428691 DOI: 10.3390/bioengineering11090947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Coronary artery disease leads to over 360,000 deaths annually in the United States, and off-the-shelf bypass graft options are currently limited and/or have high failure rates. Tissue-engineered vascular grafts (TEVGs) present an attractive option, though the promising mesenchymal stem cell (MSC)-based implants face uncertain regulatory pathways. In this study, "artificial MSCs" (ArtMSCs) were fabricated by encapsulating MSC-conditioned media (CM) in poly(lactic-co-glycolic acid) microparticles. ArtMSCs and control microparticles (Blank-MPs) were incubated over 7 days to assess the release of total protein and the vascular endothelial growth factor (VEGF-A); releasates were also assessed for cytotoxicity and promotion of smooth muscle cell (SMC) proliferation. Each MP type was loaded in previously published "lyogel" silk scaffolds and implanted as interposition grafts in Lewis rats for 1 or 8 weeks. Explanted grafts were assessed for patency and cell content. ArtMSCs had a burst release of protein and VEGF-A. CM increased proliferation in SMCs, but not after encapsulation. TEVG explants after 1 week had significantly higher patency rates with ArtMSCs compared to Blank-MPs, but similar to unseeded lyogel grafts. ArtMSC explants had lower numbers of infiltrating macrophages compared to Blank-MP explants, suggesting a modulation of inflammatory response by the ArtMSCs. TEVG explants after 8 weeks showed no significant difference in patency among the three groups. The ArtMSC explants showed higher numbers of SMCs and endothelial cells within the neotissue layer of the graft compared to Blank-MP explants. In sum, while the ArtMSCs had positive effects acutely, efficacy was lost in the longer term; therefore, further optimization is needed.
Collapse
Affiliation(s)
- Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ande X Marini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Liza A Bruk
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Prerak Gupta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Morgan V DiLeo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
- Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, PA 15261, USA
- Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Magee Women's Research Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Gueldner PH, Marini AX, Li B, Darvish CJ, Chung TK, Weinbaum JS, Curci JA, Vorp DA. Mechanical and matrix effects of short and long-duration exposure to beta-aminopropionitrile in elastase-induced model abdominal aortic aneurysm in mice. JVS Vasc Sci 2023; 4:100098. [PMID: 37152846 PMCID: PMC10160690 DOI: 10.1016/j.jvssci.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 02/19/2023] Open
Abstract
Objective Evaluate the mechanical and matrix effects on abdominal aortic aneurysms (AAA) during the initial aortic dilation and after prolonged exposure to beta-aminopropionitrile (BAPN) in a topical elastase AAA model. Methods Abdominal aortae of C57/BL6 mice were exposed to topical elastase with or without BAPN in the drinking water starting 4 days before elastase exposure. For the standard AAA model, animals were harvested at 2 weeks after active elastase (STD2) or heat-inactivated elastase (SHAM2). For the enhanced elastase model, BAPN treatment continued for either 4 days (ENH2b) or until harvest (ENH2) at 2 weeks; BAPN was continued until harvest at 8 weeks in one group (ENH8). Each group underwent assessment of aortic diameter, mechanical testing (tangent modulus and ultimate tensile strength [UTS]), and quantification of insoluble elastin and bulk collagen in both the elastase exposed aorta as well as the descending thoracic aorta. Results BAPN treatment did not increase aortic dilation compared with the standard model after 2 weeks (ENH2, 1.65 ± 0.23 mm; ENH2b, 1.49 ± 0.39 mm; STD2, 1.67 ± 0.29 mm; and SHAM2, 0.73 ± 0.10 mm), but did result in increased dilation after 8 weeks (4.3 ± 2.0 mm; P = .005). After 2 weeks, compared with the standard model, continuous therapy with BAPN did not have an effect on UTS (24.84 ± 7.62 N/cm2; 18.05 ± 4.95 N/cm2), tangent modulus (32.60 ± 9.83 N/cm2; 26.13 ± 9.10 N/cm2), elastin (7.41 ± 2.43%; 7.37 ± 4.00%), or collagen (4.25 ± 0.79%; 5.86 ± 1.19%) content. The brief treatment, EHN2b, resulted in increased aortic collagen content compared with STD2 (7.55 ± 2.48%; P = .006) and an increase in UTS compared with ENH2 (35.18 ± 18.60 N/cm2; P = .03). The ENH8 group had the lowest tangent modulus (3.71 ± 3.10 N/cm2; P = .005) compared with all aortas harvested at 2 weeks and a lower UTS (2.18 ± 2.18 N/cm2) compared with both the STD2 (24.84 ± 7.62 N/cm2; P = .008) and ENH2b (35.18 ± 18.60 N/cm2; P = .001) groups. No differences in the mechanical properties or matrix protein concentrations were associated with abdominal elastase exposure or BAPN treatment for the thoracic aorta. The tangent modulus was higher in the STD2 group (32.60 ± 9.83 N/cm2; P = .0456) vs the SHAM2 group (17.99 ± 5.76 N/cm2), and the UTS was lower in the ENH2 group (18.05 ± 4.95 N/cm2; P = .0292) compared with the ENH2b group (35.18 ± 18.60 N/cm2). The ENH8 group had the lowest tangent modulus (3.71 ± 3.10 N/cm2; P = .005) compared with all aortas harvested at 2 weeks and a lower UTS (2.18 ± 2.18 N/cm2) compared with both the STD2 (24.84 ± 7.62 N/cm2; P = .008) and ENH2b (35.18 ± 18.60 N/cm2; P = .001) groups. Abdominal aortic elastin in the STD2 group (7.41 ± 2.43%; P = .035) was lower compared with the SHAM2 group (15.29 ± 7.66%). Aortic collagen was lower in the STD2 group (4.25 ± 0.79%; P = .007) compared with the SHAM2 group (12.44 ± 6.02%) and higher for the ENH2b (7.55 ± 2.48%; P = .006) compared with the STD2 group. Conclusions Enhancing an elastase AAA model with BAPN does not affect the initial (2-week) dilation phase substantially, either mechanically or by altering the matrix content. Late mechanical and matrix effects of prolonged BAPN treatment are limited to the elastase-exposed segment of the aorta. Clinical Relevance This paper explores the use of short- and long-term exposure to beta-aminopropionitrile to create an enhanced topical elastase abdominal aortic aneurysm model in mice. Readouts of aneurysm severity included loss of mechanical stability and vascular extracellular matrix composition reminiscent of what is seen in the course of human disease. Additionally, we show that the thoracic aorta, unlike the findings below the renal arteries, is not damaged in our animal model.
Collapse
Affiliation(s)
- Pete H. Gueldner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Ande X. Marini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Bo Li
- Department of Vascular Surgery, Vanderbilt University, Nashville, TN
| | - Cyrus J. Darvish
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Timothy K. Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Justin S. Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt University, Nashville, TN
| | - David A. Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA
- Clinical & Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA
- Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
4
|
Engineering Smooth Muscle to Understand Extracellular Matrix Remodeling and Vascular Disease. Bioengineering (Basel) 2022; 9:bioengineering9090449. [PMID: 36134994 PMCID: PMC9495899 DOI: 10.3390/bioengineering9090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The vascular smooth muscle is vital for regulating blood pressure and maintaining cardiovascular health, and the resident smooth muscle cells (SMCs) in blood vessel walls rely on specific mechanical and biochemical signals to carry out these functions. Any slight change in their surrounding environment causes swift changes in their phenotype and secretory profile, leading to changes in the structure and functionality of vessel walls that cause pathological conditions. To adequately treat vascular diseases, it is essential to understand how SMCs crosstalk with their surrounding extracellular matrix (ECM). Here, we summarize in vivo and traditional in vitro studies of pathological vessel wall remodeling due to the SMC phenotype and, conversely, the SMC behavior in response to key ECM properties. We then analyze how three-dimensional tissue engineering approaches provide opportunities to model SMCs’ response to specific stimuli in the human body. Additionally, we review how applying biomechanical forces and biochemical stimulation, such as pulsatile fluid flow and secreted factors from other cell types, allows us to study disease mechanisms. Overall, we propose that in vitro tissue engineering of human vascular smooth muscle can facilitate a better understanding of relevant cardiovascular diseases using high throughput experiments, thus potentially leading to therapeutics or treatments to be tested in the future.
Collapse
|
5
|
Boucard E, Vidal L, Coulon F, Mota C, Hascoët JY, Halary F. The degradation of gelatin/alginate/fibrin hydrogels is cell type dependent and can be modulated by targeting fibrinolysis. Front Bioeng Biotechnol 2022; 10:920929. [PMID: 35935486 PMCID: PMC9355319 DOI: 10.3389/fbioe.2022.920929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
In tissue engineering, cell origin is important to ensure outcome quality. However, the impact of the cell type chosen for seeding in a biocompatible matrix has been less investigated. Here, we investigated the capacity of primary and immortalized fibroblasts of distinct origins to degrade a gelatin/alginate/fibrin (GAF)-based biomaterial. We further established that fibrin was targeted by degradative fibroblasts through the secretion of fibrinolytic matrix-metalloproteinases (MMPs) and urokinase, two types of serine protease. Finally, we demonstrated that besides aprotinin, specific targeting of fibrinolytic MMPs and urokinase led to cell-laden GAF stability for at least forty-eight hours. These results support the use of specific strategies to tune fibrin-based biomaterials degradation over time. It emphasizes the need to choose the right cell type and further bring targeted solutions to avoid the degradation of fibrin-containing hydrogels or bioinks.
Collapse
Affiliation(s)
- Elea Boucard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Luciano Vidal
- Rapid Manufacturing Platform, Institut de Recherche en Génie Civil et Mécanique (GeM), UMR 7 CNRS 6183 Ecole Centrale de Nantes, Nantes, France
| | - Flora Coulon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Jean-Yves Hascoët
- Rapid Manufacturing Platform, Institut de Recherche en Génie Civil et Mécanique (GeM), UMR 7 CNRS 6183 Ecole Centrale de Nantes, Nantes, France
| | - Franck Halary
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- *Correspondence: Franck Halary,
| |
Collapse
|
6
|
Patient-derived microphysiological model identifies the therapeutic potential of metformin for thoracic aortic aneurysm. EBioMedicine 2022; 81:104080. [PMID: 35636318 PMCID: PMC9156889 DOI: 10.1016/j.ebiom.2022.104080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Thoracic aortic aneurysm (TAA) is the permanent dilation of the thoracic aortic wall that predisposes patients to lethal events such as aortic dissection or rupture, for which effective medical therapy remains scarce. Human-relevant microphysiological models serve as a promising tool in drug screening and discovery. Methods We developed a dynamic, rhythmically stretching, three-dimensional microphysiological model. Using patient-derived human aortic smooth muscle cells (HAoSMCs), we tested the biological features of the model and compared them with native aortic tissues. Drug testing was performed on the individualized TAA models, and the potentially effective drug was further tested using β-aminopropionitrile-treated mice and retrospective clinical data. Findings The HAoSMCs on the model recapitulated the expressions of many TAA-related genes in tissue. Phenotypic switching and mitochondrial dysfunction, two disease hallmarks of TAA, were highlighted on the microphysiological model: the TAA-derived HAoSMCs exhibited lower alpha-smooth muscle actin expression, lower mitochondrial membrane potential, lower oxygen consumption rate and higher superoxide accumulation than control cells, while these differences were not evidently reflected in two-dimensional culture flasks. Model-based drug testing demonstrated that metformin partially recovered contractile phenotype and mitochondrial function in TAA patients’ cells. Mouse experiment and clinical investigations also demonstrated better preserved aortic microstructure, higher nicotinamide adenine dinucleotide level and lower aortic diameter with metformin treatment. Interpretation These findings support the application of this human-relevant microphysiological model in studying personalized disease characteristics and facilitating drug discovery for TAA. Metformin may regulate contractile phenotypes and metabolic dysfunctions in diseased HAoSMCs and limit aortic dilation. Funding This work was supported by grants from National Key R&D Program of China (2018YFC1005002), National Natural Science Foundation of China (82070482, 81771971, 81772007, 51927805, and 21734003), the Science and Technology Commission of Shanghai Municipality (20ZR1411700, 18ZR1407000, 17JC1400200, and 20YF1406900), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and Shanghai Municipal Education Commission (Innovation Program 2017-01-07-00-07-E00027). Y.S.Z. was not supported by any of these funds; instead, the Brigham Research Institute is acknowledged.
Collapse
|
7
|
Gupta P, Chaudhuri GR, Janani G, Agarwala M, Ghosh D, Nandi SK, Mandal BB. Functionalized Silk Vascular Grafts with Decellularized Human Wharton's Jelly Improves Remodeling via Immunomodulation in Rabbit Jugular Vein. Adv Healthc Mater 2021; 10:e2100750. [PMID: 34378360 DOI: 10.1002/adhm.202100750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Cell-free polymeric tissue-engineered vascular grafts (TEVGs) have shown great promise towards clinical translation; however, their limited bioactivity and remodeling ability challenge this cause. Here, a novel cell-free bioresorbable small diameter silk TEVG system functionalized with decellularized human Wharton's jelly (dWJ) matrix is developed and successfully implanted as interposition grafts into rabbit jugular vein. Implanted TEVGs remain patent for two months and integrate with host tissue, demonstrating neo-tissue formation and constructive remodeling. Mechanistic analysis reveals that dWJ matrix is a reservoir of various immunomodulatory cytokines (Interleukin-8, 6, 10, 4 and tumor necrosis factor alpha (TNF-α)), which aids in upregulating M2 macrophage-associated genes facilitating pro-remodeling behavior. Besides, dWJ treatment to human endothelial cells upregulates the expression of functional genes (cluster of differentiation 31 (CD31), endothelial nitric oxide synthase (eNOS), and vascular endothelial (VE)-cadherin), enables faster cell migration, and elevates nitric oxide (NO) production leading to the in situ development of endothelium. The dWJ functionalized silk TEVGs support increased host cell recruitment than control, including macrophages and vascular cells. It endows superior graft remodeling in terms of a dense medial layer comprising smooth muscle cells and elevates the production of extracellular matrix proteins (collagen and elastin). Altogether, these findings suggest that dWJ functionalization imitates the usefulness of cell seeding and enables graft remodeling.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Gaurab Ranjan Chaudhuri
- Department of Plastic Surgery R. G. Kar Medical College and Hospital Kolkata West Bengal 700004 India
| | - G. Janani
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Manoj Agarwala
- Department of ENT and Faciomaxillary Surgery GNRC Institute of Medical Sciences Guwahati Assam 781030 India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology West Bengal University of Animal and Fishery Sciences Kolkata West Bengal 700037 India
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
- School of Health Sciences and Technology Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
8
|
Extracellular Vesicles Derived from Primary Adipose Stromal Cells Induce Elastin and Collagen Deposition by Smooth Muscle Cells within 3D Fibrin Gel Culture. Bioengineering (Basel) 2021; 8:bioengineering8050051. [PMID: 33925413 PMCID: PMC8145221 DOI: 10.3390/bioengineering8050051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Macromolecular components of the vascular extracellular matrix (ECM), particularly elastic fibers and collagen fibers, are critical for the proper physiological function of arteries. When the unique biomechanical combination of these fibers is disrupted, or in the ultimate extreme where fibers are completely lost, arterial disease can emerge. Bioengineers in the realms of vascular tissue engineering and regenerative medicine must therefore ideally consider how to create tissue engineered vascular grafts containing the right balance of these fibers and how to develop regenerative treatments for situations such as an aneurysm where fibers have been lost. Previous work has demonstrated that the primary cells responsible for vascular ECM production during development, arterial smooth muscle cells (SMCs), can be induced to make new elastic fibers when exposed to secreted factors from adipose-derived stromal cells. To further dissect how this signal is transmitted, in this study, the factors were partitioned into extracellular vesicle (EV)-rich and EV-depleted fractions as well as unseparated controls. EVs were validated using electron microscopy, dynamic light scattering, and protein quantification before testing for biological effects on SMCs. In 2D culture, EVs promoted SMC proliferation and migration. After 30 days of 3D fibrin construct culture, EVs promoted SMC transcription of the elastic microfibril gene FBN1 as well as SMC deposition of insoluble elastin and collagen. Uniaxial biomechanical properties of strand fibrin constructs were no different after 30 days of EV treatment versus controls. In summary, it is apparent that some of the positive effects of adipose-derived stromal cells on SMC elastogenesis are mediated by EVs, indicating a potential use for these EVs in a regenerative therapy to restore the biomechanical function of vascular ECM in arterial disease.
Collapse
|
9
|
Wang Z, Liu L, Mithieux SM, Weiss AS. Fabricating Organized Elastin in Vascular Grafts. Trends Biotechnol 2020; 39:505-518. [PMID: 33019966 DOI: 10.1016/j.tibtech.2020.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Surgically bypassing or replacing a severely damaged artery using a biodegradable synthetic vascular graft is a promising treatment that allows for the remodeling and regeneration of the graft to form a neoartery. Elastin-based structures, such as elastic fibers, elastic lamellae, and laminae, are key functional components in the arterial extracellular matrix. In this review, we identify the lack of elastin in vascular grafts as a key factor that prevents their long-term success. We further summarize advances in vascular tissue engineering that are focused on either de novo production of organized elastin or incorporation of elastin-based biomaterials within vascular grafts to mitigate failure and enhance enduring in vivo performance.
Collapse
Affiliation(s)
- Ziyu Wang
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Linyang Liu
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
11
|
Cunnane EM, Lorentz KL, Ramaswamy AK, Gupta P, Mandal BB, O'Brien FJ, Weinbaum JS, Vorp DA. Extracellular Vesicles Enhance the Remodeling of Cell-Free Silk Vascular Scaffolds in Rat Aortae. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26955-26965. [PMID: 32441910 PMCID: PMC12039313 DOI: 10.1021/acsami.0c06609] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vascular tissue engineering is aimed at developing regenerative vascular grafts to restore tissue function by bypassing or replacing defective arterial segments with tubular biodegradable scaffolds. Scaffolds are often combined with stem or progenitor cells to prevent acute thrombosis and initiate scaffold remodeling. However, there are limitations to cell-based technologies regarding safety and clinical translation. Extracellular vesicles (EVs) are nanosized particles released by most cell types, including stem and progenitor cells, that serve to transmit protein and RNA cargo to target cells throughout the body. EVs have been shown to replicate the therapeutic effect of their parent cells; therefore, EVs derived from stem or progenitor cells may serve as a more translatable, cell-free, therapeutic base for vascular scaffolds. Our study aims to determine if EV incorporation provides a positive effect on graft patency and remodeling in vivo. We first assessed the effect of human adipose-derived mesenchymal stem cell (hADMSC) EVs on vascular cells using in vitro bioassays. We then developed an EV-functionalized vascular graft by vacuum-seeding EVs into porous silk-based tubular scaffolds. These constructs were implanted as aortic interposition grafts in Lewis rats, and their remodeling capacity was compared to that observed for hADMSC-seeded and blank (non-seeded) controls. The EV group demonstrated improved patency (100%) compared to the hADMSC (56%) and blank controls (82%) following eight weeks in vivo. The EV group also produced significantly more elastin (126.46%) and collagen (44.59%) compared to the blank group, while the hADMSC group failed to produce significantly more elastin (57.64%) or collagen (11.21%) compared to the blank group. Qualitative staining of the explanted neo-tissue revealed improved endothelium formation, increased smooth muscle cell infiltration, and reduced macrophage numbers in the EV group compared to the controls, which aids in explaining this group's favorable pre-clinical outcomes.
Collapse
Affiliation(s)
- Eoghan M Cunnane
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland D02 YN77
| | - Katherine L Lorentz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Prerak Gupta
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India 781039
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India 781039
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland D02 YN77
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland D02 R590
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland D02 R590
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|