1
|
Wu Y, Zhou D, Hu J. Reconstruction of gene regulatory networks for Caenorhabditis elegans using tree-shaped gene expression data. Brief Bioinform 2024; 25:bbae396. [PMID: 39133097 PMCID: PMC11318059 DOI: 10.1093/bib/bbae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Constructing gene regulatory networks is a widely adopted approach for investigating gene regulation, offering diverse applications in biology and medicine. A great deal of research focuses on using time series data or single-cell RNA-sequencing data to infer gene regulatory networks. However, such gene expression data lack either cellular or temporal information. Fortunately, the advent of time-lapse confocal laser microscopy enables biologists to obtain tree-shaped gene expression data of Caenorhabditis elegans, achieving both cellular and temporal resolution. Although such tree-shaped data provide abundant knowledge, they pose challenges like non-pairwise time series, laying the inaccuracy of downstream analysis. To address this issue, a comprehensive framework for data integration and a novel Bayesian approach based on Boolean network with time delay are proposed. The pre-screening process and Markov Chain Monte Carlo algorithm are applied to obtain the parameter estimates. Simulation studies show that our method outperforms existing Boolean network inference algorithms. Leveraging the proposed approach, gene regulatory networks for five subtrees are reconstructed based on the real tree-shaped datatsets of Caenorhabditis elegans, where some gene regulatory relationships confirmed in previous genetic studies are recovered. Also, heterogeneity of regulatory relationships in different cell lineage subtrees is detected. Furthermore, the exploration of potential gene regulatory relationships that bear importance in human diseases is undertaken. All source code is available at the GitHub repository https://github.com/edawu11/BBTD.git.
Collapse
Affiliation(s)
- Yida Wu
- School of Mathematical Sciences, Xiamen University, Zengcuo'an West Road, Siming District, Xiamen 361000, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Zengcuo'an West Road, Siming District, Xiamen 361000, China
| | - Jie Hu
- School of Mathematical Sciences, Xiamen University, Zengcuo'an West Road, Siming District, Xiamen 361000, China
| |
Collapse
|
2
|
Hosseini SH, Roussel MR. Analytic delay distributions for a family of gene transcription models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6225-6262. [PMID: 39176425 DOI: 10.3934/mbe.2024273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Models intended to describe the time evolution of a gene network must somehow include transcription, the DNA-templated synthesis of RNA, and translation, the RNA-templated synthesis of proteins. In eukaryotes, the DNA template for transcription can be very long, often consisting of tens of thousands of nucleotides, and lengthy pauses may punctuate this process. Accordingly, transcription can last for many minutes, in some cases hours. There is a long history of introducing delays in gene expression models to take the transcription and translation times into account. Here we study a family of detailed transcription models that includes initiation, elongation, and termination reactions. We establish a framework for computing the distribution of transcription times, and work out these distributions for some typical cases. For elongation, a fixed delay is a good model provided elongation is fast compared to initiation and termination, and there are no sites where long pauses occur. The initiation and termination phases of the model then generate a nontrivial delay distribution, and elongation shifts this distribution by an amount corresponding to the elongation delay. When initiation and termination are relatively fast, the distribution of elongation times can be approximated by a Gaussian. A convolution of this Gaussian with the initiation and termination time distributions gives another analytic approximation to the transcription time distribution. If there are long pauses during elongation, because of the modularity of the family of models considered, the elongation phase can be partitioned into reactions generating a simple delay (elongation through regions where there are no long pauses), and reactions whose distribution of waiting times must be considered explicitly (initiation, termination, and motion through regions where long pauses are likely). In these cases, the distribution of transcription times again involves a nontrivial part and a shift due to fast elongation processes.
Collapse
Affiliation(s)
- S Hossein Hosseini
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marc R Roussel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
3
|
Mathematical Modelling of p53 Signalling during DNA Damage Response: A Survey. Int J Mol Sci 2021; 22:ijms221910590. [PMID: 34638930 PMCID: PMC8508851 DOI: 10.3390/ijms221910590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
No gene has garnered more interest than p53 since its discovery over 40 years ago. In the last two decades, thanks to seminal work from Uri Alon and Ghalit Lahav, p53 has defined a truly synergistic topic in the field of mathematical biology, with a rich body of research connecting mathematic endeavour with experimental design and data. In this review we survey and distill the extensive literature of mathematical models of p53. Specifically, we focus on models which seek to reproduce the oscillatory dynamics of p53 in response to DNA damage. We review the standard modelling approaches used in the field categorising them into three types: time delay models, spatial models and coupled negative-positive feedback models, providing sample model equations and simulation results which show clear oscillatory dynamics. We discuss the interplay between mathematics and biology and show how one informs the other; the deep connections between the two disciplines has helped to develop our understanding of this complex gene and paint a picture of its dynamical response. Although yet more is to be elucidated, we offer the current state-of-the-art understanding of p53 response to DNA damage.
Collapse
|
4
|
Loos SAM, Hermann S, Klapp SHL. Medium Entropy Reduction and Instability in Stochastic Systems with Distributed Delay. ENTROPY (BASEL, SWITZERLAND) 2021; 23:696. [PMID: 34073091 PMCID: PMC8229647 DOI: 10.3390/e23060696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Many natural and artificial systems are subject to some sort of delay, which can be in the form of a single discrete delay or distributed over a range of times. Here, we discuss the impact of this distribution on (thermo-)dynamical properties of time-delayed stochastic systems. To this end, we study a simple classical model with white and colored noise, and focus on the class of Gamma-distributed delays which includes a variety of distinct delay distributions typical for feedback experiments and biological systems. A physical application is a colloid subject to time-delayed feedback control, which is, in principle, experimentally realizable by co-moving optical traps. We uncover several unexpected phenomena in regard to the system's linear stability and its thermodynamic properties. First, increasing the mean delay time can destabilize or stabilize the process, depending on the distribution of the delay. Second, for all considered distributions, the heat dissipated by the controlled system (e.g., the colloidal particle) can become negative, which implies that the delay force extracts energy and entropy of the bath. As we show here, this refrigerating effect is particularly pronounced for exponential delay. For a specific non-reciprocal realization of a control device, we find that the entropic costs, measured by the total entropy production of the system plus controller, are the lowest for exponential delay. The exponential delay further yields the largest stable parameter regions. In this sense, exponential delay represents the most effective and robust type of delayed feedback.
Collapse
Affiliation(s)
- Sarah A. M. Loos
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany;
- ICTP—The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Institut für Theoretische Physik, Universität Leipzig, Brüderstraße 15, 04103 Leipzig, Germany
| | - Simon Hermann
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany;
| | - Sabine H. L. Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany;
| |
Collapse
|
5
|
Alrikaby Z. Stability and Hopf bifurcation analysis of lac Operon model with distributed delay and nonlinear degradation rate. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2019; 36:489-512. [PMID: 30597019 DOI: 10.1093/imammb/dqy018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/22/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
We propose a simple model of lac operon that describes the expression of B-galactosidase from lac Z gene in Escherichia coli, through the interaction among several identical mRNA. Our goal is to explore the complex dynamics (i.e. the oscillation phenomenon) of this architecture mediated by this interaction. This model was theoretically and numerically investigated using distributed time delay. We considered the average delay as a bifurcation parameter and the nonlinear degradation rate as a control parameter. Sufficient conditions for local stability were gained by using the Routh-Hurwitz criterion in the case of a weak delay kernel. Then we proved that Hopf bifurcation happened and the direction of the periodic solution was determined using multiple time scale technique. Our results suggest that the interaction among several identical mRNA plays the main role in gene regulation.
Collapse
Affiliation(s)
- Zenab Alrikaby
- Department of Mathematics, Swinburne University of Technology, Melbourne VIC 3122, Australia and Department of Mathematics, University of Thi-Qar, Nasiriyah, Iraq
| |
Collapse
|
6
|
Blanchini F, Cuba Samaniego C, Franco E, Giordano G. Homogeneous Time Constants Promote Oscillations in Negative Feedback Loops. ACS Synth Biol 2018; 7:1481-1487. [PMID: 29676894 PMCID: PMC6008730 DOI: 10.1021/acssynbio.7b00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Biological oscillators are present
in nearly all self-regulating
systems, from individual cells to entire organisms. In any oscillator
structure, a negative feedback loop is necessary, but not sufficient
to guarantee the emergence of periodic behaviors. The likelihood of
oscillations can be improved by careful tuning of the system time
constants and by increasing the loop gain, yet it is unclear whether
there is any general relationship between optimal time constants and
loop gain. This issue is particularly relevant in genetic oscillators
resulting from a chain of different subsequent biochemical events,
each with distinct (and uncertain) kinetics. Using two families of
genetic oscillators as model examples, we show that the loop gain
required for oscillations is minimum when all elements in the loop
have the same time constant. On the contrary, we show that homeostasis
is ensured if a single element is considerably slower than the others.
Collapse
Affiliation(s)
- Franco Blanchini
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, 33100 Udine, Italy
| | - Christian Cuba Samaniego
- Department of Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States
| | - Elisa Franco
- Department of Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States
| | - Giulia Giordano
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
7
|
Rombouts J, Vandervelde A, Gelens L. Delay models for the early embryonic cell cycle oscillator. PLoS One 2018; 13:e0194769. [PMID: 29579091 PMCID: PMC5868829 DOI: 10.1371/journal.pone.0194769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/09/2018] [Indexed: 11/19/2022] Open
Abstract
Time delays are known to play a crucial role in generating biological oscillations. The early embryonic cell cycle in the frog Xenopus laevis is one such example. Although various mathematical models of this oscillating system exist, it is not clear how to best model the required time delay. Here, we study a simple cell cycle model that produces oscillations due to the presence of an ultrasensitive, time-delayed negative feedback loop. We implement the time delay in three qualitatively different ways, using a fixed time delay, a distribution of time delays, and a delay that is state-dependent. We analyze the dynamics in all cases, and we use experimental observations to interpret our results and put constraints on unknown parameters. In doing so, we find that different implementations of the time delay can have a large impact on the resulting oscillations.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
- * E-mail:
| |
Collapse
|
8
|
Feedback, Mass Conservation and Reaction Kinetics Impact the Robustness of Cellular Oscillations. PLoS Comput Biol 2016; 12:e1005298. [PMID: 28027301 PMCID: PMC5226835 DOI: 10.1371/journal.pcbi.1005298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/11/2017] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
Oscillations occur in a wide variety of cellular processes, for example in calcium and p53 signaling responses, in metabolic pathways or within gene-regulatory networks, e.g. the circadian system. Since it is of central importance to understand the influence of perturbations on the dynamics of these systems a number of experimental and theoretical studies have examined their robustness. The period of circadian oscillations has been found to be very robust and to provide reliable timing. For intracellular calcium oscillations the period has been shown to be very sensitive and to allow for frequency-encoded signaling. We here apply a comprehensive computational approach to study the robustness of period and amplitude of oscillatory systems. We employ different prototype oscillator models and a large number of parameter sets obtained by random sampling. This framework is used to examine the effect of three design principles on the sensitivities towards perturbations of the kinetic parameters. We find that a prototype oscillator with negative feedback has lower period sensitivities than a prototype oscillator relying on positive feedback, but on average higher amplitude sensitivities. For both oscillator types, the use of Michaelis-Menten instead of mass action kinetics in all degradation and conversion reactions leads to an increase in period as well as amplitude sensitivities. We observe moderate changes in sensitivities if replacing mass conversion reactions by purely regulatory reactions. These insights are validated for a set of established models of various cellular rhythms. Overall, our work highlights the importance of reaction kinetics and feedback type for the variability of period and amplitude and therefore for the establishment of predictive models. Rhythmic behavior is omnipresent in biology and has many crucial functions. In cells the activation levels and abundances of signaling molecules such as NF-κB, p53, EGFR or calcium repeatedly increase and decrease in response to stimuli. Such a dynamic behavior can also be observed monitoring the concentrations of mRNAs and proteins in the circadian clock and the cell cycle. Period and amplitude which are the time span between peaks and the peak height, respectively, as well as their variabilities are important features of oscillations. The circadian period is very stable allowing for proper time keeping, whereas in calcium signaling the period is very variable encoding different stimulation strengths. Our goal is to examine the origin of differences in sensitivities of periods and amplitudes using a computational approach. We use prototype oscillators and demonstrate that they can be used to derive general principles that explain the degree of robustness in period and amplitude for a set of commonly used models of cellular oscillators. Our findings imply that the robustness of oscillating systems can be influenced by feedback type and kinetic properties to which special attention should be paid when designing mathematical models of cellular rhythms.
Collapse
|
9
|
Wang L, Luo ZP, Yang HL, Cao J. Stability of genetic regulatory networks based on switched systems and mixed time-delays. Math Biosci 2016; 278:94-9. [PMID: 27326659 DOI: 10.1016/j.mbs.2016.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/10/2016] [Accepted: 06/10/2016] [Indexed: 11/19/2022]
Abstract
In this paper, the switched genetic regulatory networks (GRNs) are modeled from a real biological system, based on switched systems, noise and mixed time-delays. Global asymptotical stability for the proposed switched GRNs are studied by the Lyapunov method and the matrix inequality techniques. Some new sufficient conditions are obtained to ensure the global asymptotical stability of the proposed switched GRNs. Furthermore, the proposed LMI results are computationally efficient as it can be solved numerically with standard commercial software. Finally, an example is provided to illustrate the usefulness of the results.
Collapse
Affiliation(s)
- Lan Wang
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215007, China; School of Science, Jiangnan University, Wuxi 214122, China.
| | - Zong-Ping Luo
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215007, China
| | - Hui-Lin Yang
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215007, China
| | - Jinde Cao
- Department of Mathematics, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Abstract
Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete ('queue') for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.
Collapse
Affiliation(s)
- Curtis T Ogle
- Department of Physics, Virginia Tech, 50 West Campus Dr, Blacksburg, VA 24061-0435, USA
| | | |
Collapse
|
11
|
Bernard S, Crauste F. Optimal linear stability condition for scalar differential equations with distributed delay. ACTA ACUST UNITED AC 2015. [DOI: 10.3934/dcdsb.2015.20.1855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zavala E, Marquez-Lago TT. Delays induce novel stochastic effects in negative feedback gene circuits. Biophys J 2014; 106:467-78. [PMID: 24461022 DOI: 10.1016/j.bpj.2013.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022] Open
Abstract
Stochastic models of reaction networks are widely used to depict gene expression dynamics. However, stochastic does not necessarily imply accurate, as subtle assumptions can yield erroneous results, masking key discrete effects. For instance, transcription and translation are not instantaneous processes-explicit delays separate their initiation from the appearance of their functional products. However, delays are often ignored in stochastic, single-gene expression models. By consequence, effects such as delay-induced stochastic oscillations at the single-cell level have remained relatively unexplored. Here, we present a systematic study of periodicity and multimodality in a simple gene circuit with negative feedback, analyzing the influence of negative feedback strength and transcriptional/translational delays on expression dynamics. We demonstrate that an oscillatory regime emerges through a Hopf bifurcation in both deterministic and stochastic frameworks. Of importance, a shift in the stochastic Hopf bifurcation evidences inaccuracies of the deterministic bifurcation analysis. Furthermore, noise fluctuations within stochastic oscillations decrease alongside increasing values of transcriptional delays and within a specific range of negative feedback strengths, whereas a strong feedback is associated with oscillations triggered by bursts. Finally, we demonstrate that explicitly accounting for delays increases the number of accessible states in the multimodal regime, and also introduces features typical of excitable systems.
Collapse
Affiliation(s)
- Eder Zavala
- Integrative Systems Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Tatiana T Marquez-Lago
- Integrative Systems Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
| |
Collapse
|
13
|
Nikolov S, Gonzalez JV, Nenov M, Wolkenhauer O. Dynamics of a miRNA Model with Two Delays. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Riccione KA, Smith RP, Lee AJ, You L. A synthetic biology approach to understanding cellular information processing. ACS Synth Biol 2012; 1:389-402. [PMID: 23411668 PMCID: PMC3568971 DOI: 10.1021/sb300044r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The survival of cells and organisms requires proper responses to environmental signals. These responses are governed by cellular networks, which serve to process diverse environmental cues. Biological networks often contain recurring network topologies called "motifs". It has been recognized that the study of such motifs allows one to predict the response of a biological network and thus cellular behavior. However, studying a single motif in complete isolation of all other network motifs in a natural setting is difficult. Synthetic biology has emerged as a powerful approach to understanding the dynamic properties of network motifs. In addition to testing existing theoretical predictions, construction and analysis of synthetic gene circuits has led to the discovery of novel motif dynamics, such as how the combination of simple motifs can lead to autonomous dynamics or how noise in transcription and translation can affect the dynamics of a motif. Here, we review developments in synthetic biology as they pertain to increasing our understanding of cellular information processing. We highlight several types of dynamic behaviors that diverse motifs can generate, including the control of input/output responses, the generation of autonomous spatial and temporal dynamics, as well as the influence of noise in motif dynamics and cellular behavior.
Collapse
Affiliation(s)
| | - Robert P Smith
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Anna J Lee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710, USA
- Center for Systems Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
ZHDANOV VLADIMIRP. EFFECT OF NON-CODING RNA ON BISTABILITY AND OSCILLATIONS IN THE mRNA-PROTEIN INTERPLAY. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The feedbacks between the mRNA and protein synthesis may result in kinetic bistability and oscillations. Two generic models predicting bistability include, respectively, a gene with positive regulation of the mRNA production by protein and two genes with mutual suppression of the mRNA production due to negative regulation of the gene transcription by protein. The simplest model predicting oscillations describes a gene with negative regulation of the mRNA production by protein formed via mRNA translation and a few steps of conversion. We complement these models by the steps of non-coding RNA (ncRNA) formation and ncRNA-mRNA association and degradation. With this extension, the bistability can often be observed as well. Without and with ncRNA, the biochemistry behind the steady states may be different. In the latter case, for example, ncRNA may control the mRNA population in the situations when this population is relatively small, and one can observe a switch in the mRNA, protein and ncRNA populations. Our analysis of oscillatory kinetics of the mRNA-protein interplay shows that with ncRNA the oscillations may be observed in a wider range of parameters and the amplitude of oscillations may be larger.
Collapse
Affiliation(s)
- VLADIMIR P. ZHDANOV
- Department of Applied Physics, Chalmers University of Technology,-41296 Göteborg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Vera J, Rateitschak K, Lange F, Kossow C, Wolkenhauer O, Jaster R. Systems biology of JAK-STAT signalling in human malignancies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:426-34. [PMID: 21762720 DOI: 10.1016/j.pbiomolbio.2011.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Originally implicated in the regulation of survival, proliferation and differentiation of haematopoietic cells, the JAK-STAT pathway has also been linked to developmental processes, growth control and maintenance of homeostasis in a variety of other cells and tissues. Although it remains a complex system, its relative simplicity and the availability of molecular data makes it particularly attractive for modelling approaches. In this review, we will focus on JAK-STAT signalling in the context of cancer and present efforts to investigate signalling dynamics with the help of mathematical models. We describe the modelling workflow that realises a systems biology approach and give an example for interferon-γ signalling in pancreatic stellate cells.
Collapse
Affiliation(s)
- Julio Vera
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
von Stosch M, Peres J, de Azevedo SF, Oliveira R. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach. BMC SYSTEMS BIOLOGY 2010; 4:131. [PMID: 20863397 PMCID: PMC2955604 DOI: 10.1186/1752-0509-4-131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/23/2010] [Indexed: 12/30/2022]
Abstract
Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.
Collapse
Affiliation(s)
- Moritz von Stosch
- LEPAE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | | | | | | |
Collapse
|
18
|
Wang Y, Ma Z, Shen J, Liu Z, Chen L. Periodic oscillation in delayed gene networks with SUM regulatory logic and small perturbations. Math Biosci 2009; 220:34-44. [DOI: 10.1016/j.mbs.2009.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 03/22/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
19
|
de-Leon SBT, Davidson EH. Modeling the dynamics of transcriptional gene regulatory networks for animal development. Dev Biol 2009; 325:317-28. [PMID: 19028486 PMCID: PMC4100934 DOI: 10.1016/j.ydbio.2008.10.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 01/04/2023]
Abstract
The dynamic process of cell fate specification is regulated by networks of regulatory genes. The architecture of the network defines the temporal order of specification events. To understand the dynamic control of the developmental process, the kinetics of mRNA and protein synthesis and the response of the cis-regulatory modules to transcription factor concentration must be considered. Here we review mathematical models for mRNA and protein synthesis kinetics which are based on experimental measurements of the rates of the relevant processes. The model comprises the response functions of cis-regulatory modules to their transcription factor inputs, by incorporating binding site occupancy and its dependence on biologically measurable quantities. We use this model to simulate gene expression, to distinguish between cis-regulatory execution of "AND" and "OR" logic functions, rationalize the oscillatory behavior of certain transcriptional auto-repressors and to show how linked subcircuits can be dealt with. Model simulations display the effects of mutation of binding sites, or perturbation of upstream gene expression. The model is a generally useful tool for understanding gene regulation and the dynamics of cell fate specification.
Collapse
Affiliation(s)
| | - Eric H. Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Zhdanov VP. Bistability in gene transcription: Interplay of messenger RNA, protein, and nonprotein coding RNA. Biosystems 2009; 95:75-81. [DOI: 10.1016/j.biosystems.2008.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/04/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
|
21
|
Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature 2008; 456:516-9. [PMID: 18971928 PMCID: PMC6791529 DOI: 10.1038/nature07389] [Citation(s) in RCA: 745] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/05/2008] [Indexed: 11/13/2022]
Abstract
One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to “design specs” generated from computational modeling1–6. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behavior. Several fundamental gene circuits have been developed using this approach, including toggle switches7 and oscillators8–10, and these have been applied in novel contexts such as triggered biofilm development11 and cellular population control12. Here we describe an engineered genetic oscillator in Escherichia coli that is fast, robust, and persistent, with tunable oscillatory periods as fast as 13 minutes. The oscillator was designed using a previously modeled network architecture comprising linked positive and negative feedback loops1,13. Using a microfluidic platform tailored for single-cell microscopy, we precisely control environmental conditions and monitor oscillations in individual cells through multiple cycles. Experiments reveal remarkable robustness and persistence of oscillations in the designed circuit; almost every cell exhibited large-amplitude fluorescence oscillations throughout observation runs. The oscillatory period can be tuned by altering inducer levels, temperature, and media source. Computational modeling demonstrates that the key design principle for constructing a robust oscillator is a time delay in the negative feedback loop, which can mechanistically arise from the cascade of cellular processes involved in forming a functional transcription factor. The positive feedback loop increases the robustness of the oscillations and allows for greater tunability. Examination of our refined model suggested the existence of a simplified oscillator design without positive feedback, and we construct an oscillator strain confirming this computational prediction.
Collapse
Affiliation(s)
- Jesse Stricker
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
22
|
Puszyński K, Hat B, Lipniacki T. Oscillations and bistability in the stochastic model of p53 regulation. J Theor Biol 2008; 254:452-65. [PMID: 18577387 DOI: 10.1016/j.jtbi.2008.05.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 01/21/2023]
Abstract
The p53 regulatory pathway controls cell responses, which include cell cycle arrest, DNA repair, apoptosis and cellular senescence. We propose a stochastic model of p53 regulation, which is based on two feedback loops: the negative, coupling p53 with its immediate downregulator Mdm2, and the positive, which involves PTEN, PIP3 and Akt. Existence of the negative feedback assures homeostasis of healthy cells and oscillatory responses of DNA-damaged cells, which are persistent when DNA repair is inefficient and the positive feedback loop is broken. The positive feedback destroys the negative coupling between Mdm2 and p53 by sequestering most of Mdm2 in cytoplasm, so it may no longer prime the nuclear p53 for degradation. It works as a clock, giving the cell some time for DNA repair. However, when DNA repair is inefficient, the active p53 rises to a high level and triggers transcription of proapoptotic genes. As a result, small DNA damage may be repaired and the cell may return to its initial "healthy" state, while the extended damage results in apoptosis. The stochasticity of p53 regulation, introduced at the levels of gene expression, DNA damage and repair, leads to high heterogeneity of cell responses and causes cell population split after irradiation into subpopulations of apoptotic and surviving cells, with fraction of apoptotic cells growing with the irradiation dose.
Collapse
Affiliation(s)
- Krzysztof Puszyński
- Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | | | | |
Collapse
|
23
|
Kinetic oscillations in the expression of messenger RNA, regulatory protein, and nonprotein coding RNA. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.04.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Zhdanov VP. Interplay of master regulatory proteins and mRNA in gene expression: 3D Monte Carlo simulations. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Schlicht R, Winkler G. A delay stochastic process with applications in molecular biology. J Math Biol 2008; 57:613-48. [PMID: 18449541 DOI: 10.1007/s00285-008-0178-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Molecular processes of cell differentiation often involve reactions with delays. We develop a mathematical model that provides a basis for a rigorous theoretical analysis of these processes as well as for direct simulation. A discrete, stochastic approach is adopted because several molecules appear in small numbers only. Our model is a non-Markovian stochastic process. The main theoretical results include a constructive proof of the existence of the process and a derivation of the rates for initiation and completion of reactions with delays. These results guarantee that the stochastic process is a consistent and realistic description of the molecular system. They also serve as a theoretical justification of recent work on delay stochastic simulation. We apply our model to an important process in developmental biology, the formation of somites in the vertebrate embryo. Simulation of the molecular oscillator controlling this process reveals major differences between stochastic and deterministic models.
Collapse
Affiliation(s)
- Robert Schlicht
- Institute of Biomathematics and Biometry, Ingolstädter Landstr. Neuherberg, Germany.
| | | |
Collapse
|
26
|
Abstract
Somitogenesis describes the segmentation of vertebrate embryonic bodies, which is thought to be induced by ultradian clocks (i.e., clocks with relatively short cycles compared to circadian clocks). One candidate for such a clock is the bHLH factor Hes1, forming dimers which repress the transcription of its own encoding gene. Most models for such small autoregulative networks are based on delay equations where a Hill function represents the regulation of transcription. The aim of the present paper is to estimate the Hill coefficient in the switch of an Hes1 oscillator and to suggest a more detailed model of the autoregulative network. The promoter of Hes1 consists of three to four binding sites for Hes1 dimers. Using the sparse data from literature, we find, in contrast to other statements in literature, that there is not much evidence for synergistic binding in the regulatory region of Hes1, and that the Hill coefficient is about three. As a model for the negative feedback loop, we use a Goodwin system and find sustained oscillations for systems with a large enough number of linear differential equations. By a suitable variation of the number of equations, we provide a rational lower bound for the Hill coefficient for such a system. Our results suggest that there exist additional nonlinear processes outside of the regulatory region of Hes1.
Collapse
Affiliation(s)
- Stefan Zeiser
- GSF-National Research Centre for Environment and Health, Institute of Biomathematics and Biometry, Oberschleissheim, Germany.
| | | | | |
Collapse
|
27
|
Nikolov S, Vera J, Kotev V, Wolkenhauer O, Petrov V. Dynamic properties of a delayed protein cross talk model. Biosystems 2008; 91:51-68. [PMID: 17709175 DOI: 10.1016/j.biosystems.2007.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 11/26/2022]
Abstract
In this paper we investigate how the inclusion of time delay alters the dynamical properties of the Jacob-Monod model, describing the control of the beta-galactosidase synthesis by the lac repressor protein in E. coli. The consequences of a time delay on the dynamics of this system are analysed using Hopf's theorem and Lyapunov-Andronov's theory applied to the original mathematical model and to an approximated version. Our analytical calculations predict that time delay acts as a key bifurcation parameter. This is confirmed by numerical simulations. A critical value of time delay, which depends on the values of the model parameters, is analytically established. Around this critical value, the properties of the system change drastically, allowing under certain conditions the emergence of stable limit cycles, that is self-sustained oscillations. In addition, the features of the end product repression play an essential role in the characterisation of these limit cycles: if cooperativity is considered in the end product repression, time delay higher than the mentioned critical value induce differentiated responses during the oscillations, provoking cycles of all-or-nothing response in the concentration of the species.
Collapse
Affiliation(s)
- Svetoslav Nikolov
- Institute of Mechanics and Biomechanics-BAS, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
28
|
Momiji H, Monk NAM. Oscillatory expression of Hes family transcription factors: insights from mathematical modelling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 641:72-87. [PMID: 18783173 DOI: 10.1007/978-0-387-09794-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Oscillatory expression of the Hes family of transcription factors plays a central role in the segmentation of the vertebrate body during embryonic development. Analogous oscillations in cultured cells suggest that Hes oscillations may be important in other developmental processes, and provide an excellent opportunity to explore the origin of these oscillations in a relatively simple setting. Mathematical and computational modelling have been used in combination with quantitative mRNA and protein expression data to analyse the origin and properties of Hes oscillations, and have highlighted the important roles played by time delays in negative feedback circuits. In this chapter, we review recent theoretical and experimental results, and discuss how analysis of existing models suggests potential avenues for further study of delayed feedback oscillators.
Collapse
Affiliation(s)
- Hiroshi Momiji
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
29
|
Buscarlet M, Stifani S. The 'Marx' of Groucho on development and disease. Trends Cell Biol 2007; 17:353-61. [PMID: 17643306 DOI: 10.1016/j.tcb.2007.07.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/19/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Groucho proteins are abundant and broadly expressed nuclear factors that lack intrinsic DNA-binding activity but can interact with a variety of DNA-binding proteins. The recruitment of Groucho to specific gene regulatory sequences results in transcriptional repression. In both invertebrates and vertebrates, Groucho family members act as important regulators of several signaling mechanisms, including the Notch, Wingless/Wnt and Dpp/BMP/TGF-beta signaling pathways. Recent studies of embryonic development in several species point to an important role for Groucho in the regulation of multiple patterning and differentiation events. Moreover, a deregulated expression of human Groucho family members is correlated with several neoplastic conditions. Here we focus on the functions of Groucho proteins during body patterning and their implication in tumorigenesis.
Collapse
Affiliation(s)
- Manuel Buscarlet
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|