1
|
Renton M, Willse A, Aradhya C, Tyre A, Head G. Simulated herbicide mixtures delay both specialist monogenic and generalist polygenic resistance evolution in weeds. PEST MANAGEMENT SCIENCE 2024; 80:5983-5994. [PMID: 39096081 DOI: 10.1002/ps.8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Evolution of herbicide-resistant weed populations is a major challenge to world food production. Using different herbicides in rotation and/or using different herbicides together as mixtures are strategies that may delay the selection of resistance. This study used simulation modelling to investigate whether mixtures and rotations can delay the selection of both generalist polygenic and specialist monogenic herbicide resistance, and whether these strategies are more likely to lead to the selection of generalist resistance in weed types with varying biological characteristics. RESULTS Our simulations suggest that well-designed effective herbicide mixtures should delay evolution of both polygenic and monogenic resistance better than rotations and single herbicides across all weed types. Both mixture and rotation strategies increased the likelihood of polygenic resistance compared to single-herbicide use, and the likelihood of polygenic resistance increased as the fecundity and competitiveness of the weed increased. Whether monogenic or polygenic resistance occurred in each case depended most on the relative initial allele frequencies. We did not find that herbicide mixtures were more likely than rotations to lead to the selection of generalist polygenic resistance. The simulated efficacy of mixtures over rotations decreased if components were used at reduced rates or when individual components had already been used solo. CONCLUSION Herbicide rotations and particularly well-designed mixtures should delay evolution of both polygenic and monogenic resistance, especially if used as part of an effective integrated weed management programme. However, herbicide mixtures and rotations may also increase the risk that resistance will be generalist polygenic rather than specialist monogenic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Renton
- School of Biological Sciences and Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Alan Willse
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| | | | - Andrew Tyre
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| | - Graham Head
- Regulatory Science, Bayer Crop Science, St Louis, MO, USA
| |
Collapse
|
2
|
Cheng X, Dai T, Hu Z, Cui T, Wang W, Han P, Hu M, Hao J, Liu P, Liu X. Cytochrome P450 and Glutathione S-Transferase Confer Metabolic Resistance to SYP-14288 and Multi-Drug Resistance in Rhizoctonia solani. Front Microbiol 2022; 13:806339. [PMID: 35387083 PMCID: PMC8977892 DOI: 10.3389/fmicb.2022.806339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
SYP-14288 is a fungicide as an uncoupler of oxidative phosphorylation, which is effective in controlling fungal pathogens like Rhizoctonia solani. To determine whether R. solani can develop SYP-14288 resistance and possibly multi-drug resistance (MDR), an SYP-14288-resistant mutant of R. solani X19-7 was generated from wild-type strain X19, and the mechanism of resistance was studied through metabolic and genetic assays. From metabolites of R. solani treated with SYP-14288, three compounds including M1, M2, and M3 were identified according to UPLC-MS/MS analysis, and M1 accumulated faster than M2 and M3 in X19-7. When X19-7 was treated by glutathione-S-transferase (GST) inhibitor diethyl maleate (DEM) and SYP-14288 together, or by DEM plus one of tested fungicides that have different modes of action, a synergistic activity of resistance occurred, implying that GSTs promoted metabolic resistance against SYP-14288 and therefore led to MDR. By comparing RNA sequences between X19-7 and X19, six cytochrome P450s (P450s) and two GST genes were selected as a target, which showed a higher expression in X19-7 than X19 both before and after the exposure to SYP-14288. Furthermore, heterologous expression of P450 and GST genes in yeast was conducted to confirm genes involved in metabolic resistance. In results, the P450 gene AG1IA_05136 and GST gene AG1IA_07383 were related to fungal resistance to multiple fungicides including SYP-14288, fluazinam, chlorothalonil, and difenoconazole. It was the first report that metabolic resistance of R. solani to uncouplers was associated with P450 and GST genes.
Collapse
Affiliation(s)
- Xingkai Cheng
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tan Dai
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhihong Hu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tongshan Cui
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Ping Han
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Maolin Hu
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Comont D, Lowe C, Hull R, Crook L, Hicks HL, Onkokesung N, Beffa R, Childs DZ, Edwards R, Freckleton RP, Neve P. Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nat Commun 2020; 11:3086. [PMID: 32555156 PMCID: PMC7303185 DOI: 10.1038/s41467-020-16896-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Intense selection by pesticides and antibiotics has resulted in a global epidemic of evolved resistance. In agriculture and medicine, using mixtures of compounds from different classes is widely accepted as optimal resistance management. However, this strategy may promote the evolution of more generalist resistance mechanisms. Here we test this hypothesis at a national scale in an economically important agricultural weed: blackgrass (Alopecurus myosuroides), for which herbicide resistance is a major economic issue. Our results reveal that greater use of herbicide mixtures is associated with lower levels of specialist resistance mechanisms, but higher levels of a generalist mechanism implicated in enhanced metabolism of herbicides with diverse modes of action. Our results indicate a potential evolutionary trade-off in resistance management, whereby attempts to reduce selection for specialist resistance traits may promote the evolution of generalist resistance. We contend that where specialist and generalist resistance mechanisms co-occur, similar trade-offs will be evident, calling into question the ubiquity of resistance management based on mixtures and combination therapies. Mixtures of antibiotics or pesticides can help reduce the evolution of resistance to individual compounds. Here, Comont et al. show that in blackgrass, an important agricultural weed, herbicide mixtures do reduce specialized resistance but instead can select for a generalized resistance mechanism.
Collapse
Affiliation(s)
- David Comont
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Claudia Lowe
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Richard Hull
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Laura Crook
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Helen L Hicks
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, S10 2TN, UK.,School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, UK
| | - Nawaporn Onkokesung
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Roland Beffa
- Bayer Crop Science, Weed Resistance Research, 65926, Frankfurt, Germany
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, S10 2TN, UK
| | - Robert Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, S10 2TN, UK
| | - Paul Neve
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.,Agriculture & Horticulture Development Board, Stoneleigh Park, Kenilworth, CV8 2TL, UK
| |
Collapse
|
4
|
Somerville GJ, Powles SB, Walsh MJ, Renton M. How do spatial heterogeneity and dispersal in weed population models affect predictions of herbicide resistance evolution? Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Somerville GJ, Powles SB, Walsh MJ, Renton M. Why was resistance to shorter-acting pre-emergence herbicides slower to evolve? PEST MANAGEMENT SCIENCE 2017; 73:844-851. [PMID: 28019070 DOI: 10.1002/ps.4509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Across several agricultural systems the evolution of herbicide resistance has occurred more rapidly to post-emergence than pre-emergence herbicides; however, the reasons for this are not clear. We used a new simulation model to investigate whether interactions between differences in order of application and weed cohorts affected could explain this historically observed difference between the herbicide groups. RESULTS A 10 year delay in resistance evolution was predicted for a shorter-acting residual pre-emergence (cf. post-emergence), when all other parameters were identical. Differences in order of application between pre- and post-emergence herbicides had minimal effect on rates of resistance evolution when similar weed cohorts were affected. CONCLUSION This modelling suggested that the historically observed lower levels of resistance to pre-emergence herbicides are most likely to be due to the smaller number of weed cohorts affected by many pre-emergence herbicides. The lower number of weed cohorts affected by pre-emergence herbicides necessitated the use of additional, effective control measures, thereby reducing resistance evolution. This study highlights the advantages of applying multiple control measures to each weed cohort. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gayle J Somerville
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Michael J Walsh
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Michael Renton
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|